69 research outputs found

    Hydrogenative Cycloisomerization and Sigmatropic Rearrangement Reactions of Cationic Ruthenium Carbenes Formed by Catalytic Alkyne gem-Hydrogenation

    Get PDF
    gem-Hydrogenation of propargyl alcohol derivatives with [CpXRu(MeCN)3]PF6 (CpX=substituted cyclopentadienyl) as catalysts affords cationic pianostool ruthenium carbene complexes which are so electrophilic that they attack a tethered olefin to furnish cyclopentene products; cyclopropanation or metathesis do not compete with this novel transformation. If the transient carbenes carry appropriate propargylic substituents, however, they engage in ([2,3]-sigmatropic) rearrangements to give enol esters (carbonates, carbamates, sulfonates) or alkenyl halides. Both pathways are unprecedented in the vast hydrogenation literature. The proposed mechanistic scenarios are in line with labeling experiments and spectroscopic data; most notably, PHIP NMR spectroscopy (PHIP=parahydrogen induced polarization) provides compelling evidence that the reactions are indeed triggered by highly unorthodox gem-hydrogenation events

    Catalytic Activation of N<sub>2</sub>O at a Low-Valent Bismuth Redox Platform

    Get PDF
    Herein we present the catalytic activation of N2O at a BiI⇄BiIII redox platform. The activation of such a kinetically inert molecule was achieved by the use of bismuthinidene catalysts, aided by HBpin as reducing agent. The protocol features remarkably mild conditions (25 °C, 1 bar N2O), together with high turnover numbers (TON, up to 6700) and turnover frequencies (TOF). Analysis of the elementary steps enabled structural characterization of catalytically relevant intermediates after O-insertion, namely a rare arylbismuth oxo dimer and a unique monomeric arylbismuth hydroxide. This protocol represents a distinctive example of a main-group redox cycling for the catalytic activation of N2O

    Fluorination of arylboronic esters enabled by bismuth redox catalysis

    Get PDF
    Bismuth catalysis has traditionally relied on the Lewis acidic properties of the element in a fixed oxidation state. In this paper, we report a series of bismuth complexes that can undergo oxidative addition, reductive elimination, and transmetallation in a manner akin to transition metals. Rational ligand optimization featuring a sulfoximine moiety produced an active catalyst for the fluorination of aryl boronic esters through a bismuth (III)/bismuth (V) redox cycle. Crystallographic characterization of the different bismuth species involved, together with a mechanistic investigation of the carbon-fluorine bond-forming event, identified the crucial features that were combined to implement the full catalytic cycle

    C–H Insertion via Ruthenium Catalyzed gem-Hydrogenation of 1,3-Enynes

    Get PDF
    gem-Hydrogenation of an internal alkyne with the aid of [Cp*RuCl]4 as the precatalyst is a highly unorthodox transformation, in which one C atom of the triple bond is transformed into a methylene group, whereas the second C atom gets converted into a ruthenium carbene. In the case of 1,3-enynes bearing a propargylic steering substituent as the substrates, the reaction occurs regioselectively, giving rise to vinyl carbene complexes that adopt interconverting η1/η3-binding modes in solution; a prototypical example of such a reactive intermediate was characterized in detail by spectroscopic means. Although both forms are similarly stable, only the η3-vinyl carbene proved kinetically competent to insert into primary, secondary, or tertiary C–H bonds on the steering group itself or another suitably placed ether, acetal, orthoester, or (sulfon)amide substituent. The ensuing net hydrogenative C–H insertion reaction is highly enabling in that it gives ready access to spirocyclic as well as bridged ring systems of immediate relevance as building blocks for medicinal chemistry. Moreover, the reaction scales well and lends itself to the formation of partly or fully deuterated isotopologues. Labeling experiments in combination with PHIP NMR spectroscopy (PHIP = parahydrogen induced polarization) confirmed that the reactions are indeed triggered by gem-hydrogenation, whereas kinetic data provided valuable insights into the very nature of the turnover-limiting transition state of the actual C–H insertion step

    Triple Resonance Experiments for the Rapid Detection of <sup>103</sup>Rh NMR Shifts: A Combined Experimental and Theoretical Study into Dirhodium and Bismuth–Rhodium Paddlewheel Complexes

    Get PDF
    A H(C)Rh triple resonance NMR experiment makes the rapid detection of 103Rh chemical shifts possible, which were previously beyond reach. It served to analyze a series of dirhodium and bismuth–rhodium paddlewheel complexes of the utmost importance for metal–carbene chemistry. The excellent match between the experimental and computed 103Rh shifts in combination with a detailed analysis of the pertinent shielding tensors forms a sound basis for a qualitative and quantitative interpretation of these otherwise (basically) inaccessible data. The observed trends clearly reflect the influence exerted by the equatorial ligands (carboxylate versus carboxamidate), the axial ligands (solvents), and the internal “metalloligand” (Rh versus Bi) on the electronic estate of the reactive Rh(II) center

    Catalytic Hydrodefluorination via Oxidative Addition, Ligand Metathesis, and Reductive Elimination at Bi(I)/Bi(III) Centers

    Get PDF
    Herein, we report a hydrodefluorination reaction of polyfluoroarenes catalyzed by bismuthinidenes, Phebox-Bi(I) and OMe-Phebox-Bi(I). Mechanistic studies on the elementary steps support a Bi(I)/Bi(III) redox cycle that comprises C(sp2)–F oxidative addition, F/H ligand metathesis, and C(sp2)–H reductive elimination. Isolation and characterization of a cationic Phebox-Bi(III)(4-tetrafluoropyridyl) triflate manifests the feasible oxidative addition of Phebox-Bi(I) into the C(sp2)–F bond. Spectroscopic evidence was provided for the formation of a transient Phebox-Bi(III)(4-tetrafluoropyridyl) hydride during catalysis, which decomposes at low temperature to afford the corresponding C(sp2)–H bond while regenerating the propagating Phebox-Bi(I). This protocol represents a distinct catalytic example where a main-group center performs three elementary organometallic steps in a low-valent redox manifold

    Bismuth radical catalysis in the activation and coupling of redox-active electrophiles

    Get PDF
    Radical cross-coupling reactions represent a revolutionary tool to forge C(sp3)–C and C(sp3)–heteroatom bonds, by means of transition metals, photoredox or electrochemical approaches. This study demonstrates how a low-valent bismuth complex is able to undergo one-electron oxidative addition with redox-active alkyl radical precursors in an autonomous manner, mimicking the behavior of first-row transition metals. This reactivity paradigm for bismuth gives rise to unique radical-equilibrium complexes, which could be fully characterized in solution and solid state. The resulting Bi(III)–C(sp3) intermediates display divergent reactivity patterns depending on the α-substituents of the alkyl fragment. Mechanistic investigations on this reactivity led to the development of a bismuth-catalyzed C(sp3)–N cross-coupling reaction that operates under mild conditions and accommodates synthetically relevant N-heterocycles as coupling partners

    Canopy Catalysts for Alkyne Metathesis: Investigations into a Bimolecular Decomposition Pathway and the Stability of the Podand Cap

    Get PDF
    Molybdenum alkylidyne complexes with a trisilanolate podand ligand framework (“canopy catalysts”) are the arguably most selective catalysts for alkyne metathesis known to date. Among them, complex 1a endowed with a fence of lateral methyl substituents on the silicon linkers is most reactive, although fairly high loadings are required in certain applications. It is now shown that this catalyst decomposes readily via a bimolecular pathway, which engages the Mo≡CR entities in a stoichiometric triple bond metathesis event to furnish RC≡CR and the corresponding dinuclear complex 8 with a Mo≡Mo core. In addition to the regular analytical techniques, 95Mo NMR was used to confirm this unusual outcome. This rapid degradation mechanism is largely avoided by increasing the size of the peripheral substituents on silicon, without unduly compromising the activity of the resulting complexes. When chemically challenged, however, canopy catalysts can open the apparently somewhat strained tripodal ligand cages; this reorganization leads to the formation of cyclo-tetrameric arrays composed of four metal alkylidyne units linked together via one silanol arm of the ligand backbone. The analogous tungsten alkylidyne complex 6 endowed with a tripodal tris-alkoxide (rather than siloxide) ligand framework is even more susceptible to such a controlled and reversible cyclo-oligomerization. The structures of the resulting giant macrocyclic ensembles were established by single crystal X-ray diffraction

    Productive Alkyne Metathesis with “Canopy Catalysts” Mandates Pseudorotation

    Get PDF
    Molybdenum alkylidyne complexes of the “canopy catalyst” series define new standards in the field of alkyne metathesis. The tripodal ligand framework lowers the symmetry of the metallacyclobutadiene complex formed by [2 + 2] cycloaddition with the substrate and imposes constraints onto the productive [2 + 2] cycloreversion; pseudorotation corrects this handicap and makes catalytic turnover possible. A combined spectroscopic, crystallographic, and computational study provides insights into this unorthodox mechanism and uncovers the role that metallatetrahedrane complexes play in certain cases

    Mechanism of the Aryl-F Bond-Forming Step from Bi(V) Fluorides.

    Get PDF
    In this article, we describe a combined experimental and theoretical mechanistic investigation of the C(sp2)-F bond formation from neutral and cationic high-valent organobismuth(V) fluorides, featuring a dianionic bis-aryl sulfoximine ligand. An exhaustive assessment of the substitution pattern in the ligand, the sulfoximine, and the reactive aryl on neutral triarylbismuth(V) difluorides revealed that formation of dimeric structures in solution promotes facile Ar-F bond formation. Noteworthy, theoretical modeling of reductive elimination from neutral bismuth(V) difluorides agrees with the experimentally determined kinetic and thermodynamic parameters. Moreover, the addition of external fluoride sources leads to inactive octahedral anionic Bi(V) trifluoride salts, which decelerate reductive elimination. On the other hand, a parallel analysis for cationic bismuthonium fluorides revealed the crucial role of tetrafluoroborate anion as fluoride source. Both experimental and theoretical analyses conclude that C-F bond formation occurs through a low-energy five-membered transition-state pathway, where the F anion is delivered to a C(sp2) center, from a BF4 anion, reminiscent of the Balz-Schiemann reaction. The knowledge gathered throughout the investigation permitted a rational assessment of the key parameters of several ligands, identifying the simple sulfone-based ligand family as an improved system for the stoichiometric and catalytic fluorination of arylboronic acid derivatives
    • …
    corecore