Supporting Crystallographic Information

Figure S1. Plot of the molecular structure of tetrameric pyridine adduct 10. Atomic displacement
ellipsoids shown at the 50 % probability level; H atoms are omitted for clarity. Color code: Mo = grey,
O =red, N = blue, Si = orange.

X-ray Crystal Structure Analysis of the Tetrameric Pyridine Adduct 10: Cs16 H276 M4 N4 Q4 Sitz, M, =
5490.23 g - mol?, violet prism, crystal size 0.257 x 0.105 x 0.100 mm?3, monoclinic, space group C2/c
[15], @ = 25.6416(12) A, b = 29.0265(13) A, c = 47.213(2) A, B=92.816(2)°, V = 35098(3) A3, T = 100(2)
K, Z=4, Deoic = 1.039 g - cm3, A = 0.71073 A, 1(Mo-K,) = 0.238 mm™, analytical absorption correction
(Tmin=0.96, Tmax=0.98), Bruker-AXS Kappa Mach3 diffractometer with APEX-Il detector and IuS micro
focus X-ray source, 0.864 < < 26.287°, 575157 measured reflections, 35471 independent reflections,
28987 reflections with I > 20(/), Rint = 0.0715, 1726 parameters, S = 1.072, residual electron density
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+1.2 (0.94 A from Mo2) / -0.9 (0.65 A from Mo2) e - A3, The structure was solved by SHELXT and refined
by full-matrix least-squares (SHELXL) against F?> to R; = 0.061 [/ > 26(/)], wR2 = 0.147. CCDC-1987918
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INTENSITY STATISTICS FOR DATASET

Ee=solution $hata #Theory %Complete Redondancy Mean I Mean I/s Emerge Rsigma

Inf - 3.27 546 Se6 96. 5 16.82 58.87 80.34 0.0250 0.0098
3.27 - 2.15 1283 1283 100.0 27.17 22.51 T75.3%9 0.0325 0.00%2
2,19 - 1.74 1785 1735 100.0 28.96 15.76 67.45 0.0406 0.0103
1.74 - 1.51 1696 1897 99.9 28.47 11.16 S6.46 0.0505 0.0124
1.51 - 1.37 1857 1857 100.0 25.66 9.01 44.99 0.0586 0.0155
1.37 - 1.27 1876 1876 100.0 20.97 T7.84 35.38 0.0683 0.01%9
1.27 - 1.20 1653 1683 100.0 18.60 6.36 26.14 0.0810 0.0253
1.20 - 1.14 1753 1733 100.0 16.85 5.45 23.55 0.0%31 0.0310
1.14 - 1.0% 1544 16544 100.0 15.63 4.77 20.11 0.1071 0.0367
1.09 - 1.05 1715 1715 100.0 14.83 4.50 18.28 0.1137 0.0407
1.05 - 1.01 1987 15987 100.0 14.27 3.91 15.83 0.1280 0.0474
1.01 - 0.98 1725 1725 100.0 13.79 3.33 13.67 0.1502 0.0567
0.98 - D.95 1952 1952 100.0 13.39 3.04 12.39 0.1641 0.0639
0.95 - 0.92 2162 2162 100.0 12.69 2.83 10.59 0.1867 0.0762
0.92 - 0.50 1675 1675 100.0 11.76 2.36 9.14 0.2074 0.089%3
0.%0 - D.88 1727 1727 100.0 10.594 2.08 T.80 0.2306 0.1049
0.88 - D.86 2008 2008 100.0 10.51 2.08 T7.43 0.2422 0.1108
0.86 - D.64 2114 2114 100.0 9.98 2.05 6.86 0.2448 0.11%2
0.54 - 0D.83 1170 1170 100.0 9.89 1.50 6.36 0.2621 0.1306
0.83 - 0.81 2480 2460 100.0 9.59 1.77 5.84 0.2823 0.1452
0.81 - 0.80 928 992 93.5 6.71 1.60 4.58 0.3036 0.2022
0.%0 - 0.80 10407 10471 99.4 9.83 1.594 6.62 0.2544 0.1279

Inf - 0.80 36206 36291 99.8 16.03 6.30 23.84 0.0688 0.0321
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Figure S2. Asymmetric unit of 10 showing coordination of pyridine to the metallic centre (top) and
tetrameric structure of 10 (bottom) about the twofold crystallographic axis at the centre of gravity.

The tetrameric molecule forms an untypically large entity with four molecules in the unit cell
dimensions of a = 25.6416(12) A, b = 29.0265(13) A, ¢ = 47.213(2) A and V = 35098(3) A3%. There is
evidence of several non-interacting pyridine molecules and possibly disordered pentane presentin the
structure. The relatively poor crystal quality is reflected in the diffraction data, which do not allow an
exact description of the disordered solute. To improve signal-to-noise ratio quality the SQUEEZE
routine in PLATON was applied to dataset.! This results in a residual electron density of 1.178 and -
0.911 eA? after final refinement.

1 A. L. Spek, Acta Cryst. 2015, C71, 9-18.
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Figure S3. Packing of compound 10 in the unit cell. View along the c axis (top left) and in a random
orientation (bottom left). Calculated voids (probe radius 1.2 A, 0.7 A grid spacing) are shown
respectively on the right.

After application of the SQUEEZE routine, voids remain in the structure, corresponding to 27.2%
(9554.91 A3) empty space in a total unit cell volume of 35098(3) A3. Eight low index diffraction
intensities were obstructed by the beam stop and omitted from final refinement. In addition, the
terminal groups of several coordinating p-methoxybenzylidyne ligands are partially disordered (70:30
and 50:50). H atoms were refined using a riding model.
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Figure S4. Plot of the molecular structure of the cyclotetrameric complex [12 - 8 fluorobenzene].
Atomic displacement ellipsoids shown at the 50 % probability level, H-atoms are omitted for clarity.
Color code: W = grey, O = red, F = yellow-green.

X-ray Crystal Structure Analysis of Complex [12 - 8 fluorobenzene]: C114 Hi16 F4 Os W5, M, = 2025.76 g
mol?, yellow needle, crystal size 0.02 x 0.01 x 0.01 mm?, monoclinic, P2:/n [14], a = 15.609(11) A,
b = 29.629(4) A, ¢ = 21.072(8) A, B = 96.054(19)°, V = 9691(8) A3, T = 100(2) K, Z = 4,
Dearc = 1.388 g-cm?, 1=0.6199 A, 4#(A) =1.712 mm™, no absorption correction, P11 beamline at PETRAIII
(DESY, Hamburg) synchrotron facility equipped with single ¢-axis goniometer and Pilatus 6M detector,
1.038 < #< 24.410°, 156324 measured reflections, 23365 independent reflections, 17198 reflections
with />20(/), Rint = 0.0947. The structure was solved by SHELXT and refined by full-matrix least-squares
(SHELXL) against F? to R; = 0.0567 [/ > 205{/)], wR2 = 0.1486, 1102 parameters, 137 restraints. CCDC-
2086711
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Figure S5. Images of the mounted crystal on a 30 um MiTeGen loop at 180° and 270° ¢-angle. Red
cycle and cross indicating the profile of 100 um primary beam.

INTENSITY STATISTICS FOR DATASET

Resolution #Data #Theory %Complete Redundancy Mean I Mean I/s Rmerge Rsigma
Inf - 2.87 467 469 99.6 6.83 88.46 28.81 0.0250 0.0294
2.87 - 1.90 1090 1091 99.9 6.59 44.08 24.30 0.0396 0.0321
1.90 - 1.50 1564 1571 99.6 6.99 33.24 22.85 0.0468 0.0324
1.50 - 1.31 1524 1535 99.3 6.35 21.78 18.68 0.0609 0.0389
1.31 - 1.18 1679 1715 97.9 6.66 16.40 16.57 0.0757 0.0426
1.18 - 1.10 1436 1467 97.9 6.84 11.91 14.25 0.0884 0.0499
1.10 - 1.03 1663 1701 97.8 6.62 9.27 12.28 0.1125 0.0603
1.03 - 0.98 1490 1517 98.2 6.32 7.78 10.52 0.1337 0.0715
0.98 - 0.93 1812 1872 96.8 6.49 6.32 9.35 0.1593 0.0826
0.93 - 0.90 1264 1327 95.3 6.54 5.39 8.30 0.1791 0.0940
0.90 - 0.87 1471 1509 97.5 6.69 4.53 7.31 0.2064 0.1092
0.87 - 0.84 1639 1737 94.4 6.15 3.98 6.28 0.2387 0.1303
0.84 - 0.81 1907 1987 96.0 5.96 3.38 5.26 0.2771 0.1600
0.81 - 0.79 1454 1530 95.0 6.08 3.11 4.84 0.2962 0.1744
0.79 - 0.77 1596 1682 94.9 6.12 2.66 4.33 0.3395 0.2061
0.77 - 0.75 1715 1819 94.3 6.18 2.28 3.76 0.3892 0.2415
0.75 - 0.74 967 1013 95.5 5.69 1.98 3.11 0.4421 0.3001
0.74 - 0.72 2030 2180 93.1 5.53 1.89 2.93 0.4567 0.3225
0.72 - 0.71 1090 1150 94.8 5.70 1.64 2.53 0.4997 0.3808
0.71 - 0.69 2392 2590 92.4 5.60 1.43 2.23 0.5477 0.4435
0.69 - 0.68 627 857 73.2 3.82 0.83 1.20 0.7042 0.9499
0.78 - 0.68 9673 10521 91.9 5.60 1.82 2.87 0.4571 0.3367
Inf - 0.68 30877 32319 95.5 6.18 9.98 9.24 0.1041 0.0676

Because of small crystal size and high reactivity of this compound, an investigation with synchrotron
radiation (A = 0.61990 A) was undertaken at PL1@PETRAIII (DESY, Hamburg). A resolution cut off (SHEL
99 0.75) was applied to suppress poorly measured intensities at higher diffraction angles. Disorder
solute molecules (two fluorobenzene molecules with 50:50 occupancy) are modeled using DSR tool
implemented in OLEX2. Solute molecules are partially described by isotropic displacement parameters.
The high residual electron density (SHELXL: Highest peak 2.37 e A at 0.6997 0.5226 0.7755, 0.90 A
from W2) could possibly be caused by anharmonic displacement of the W2 atom. No absorption
correction was applied but the fact that only one W atom is affected indicates that absorption effects
are not the cause of the residual electron density near to W2.
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Figure S6. Asymmetric unit of the tetrameric structure with W=C bond lengths of both independent
molecules (top). Tetrameric structure of complex 12 with a crystallographic inversion centre (orange
dot) in middle of the entity (bottom).

It was found that the compound forms monoclinic crystals (P2:/n) with unit cell dimensions of
a = 15.609(11) A, b = 29.629(4) A, ¢ = 21.072(8) A, B = 96.054(19)°, a total unit cell volume of
V = 9691(8) A% and Z = 4. One-half of the centrosymmetric tetramer comprises the crystallographic
asymmetric unit. Each tungsten atom is situated in an almost ideal tetrahedral coordination sphere of
three alkoxy oxygen and one alkyne carbon atom. The average W—0O distance is 1.868(7) A and the
W-0-C angles ranges from 139.47 to 153.03°. The W-C bond lengths are 1.775(7) and
1.782(7) A, W-C-C bond angles are 173.5(5) and 175.6(5)°. All four tungsten entites are interconnected
by four tripodal ligands. Each ligand is coordinating in a 1:2 ratio to two individual tungstens atoms.
No hydrogen bonds or W-mt interactions could be found in the described structure.
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Figure S7. The arrangement of the four W atoms in the complex 12, showing the non-bonding W----W
distances (top) and coplanar geometry (bottom).

Figure S8. Overlay of the local environments (WOsC) of the four W atoms in the complex 12, showing
the relative conformation of the respective 2,6-dimethylbenzylidyne groups.
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Figure S9. Overlay of the central C6 ring of the four podand ligands in the tetrameric complex 12,
showing their relative conformations (side and top views, O atoms shown in red).

A search for similar structures in the CSD database (performed on May 28, 2021

using ConQuest 2020.2.0; CSD version 5.41 (November 2019) + 1 update) with the

input shown in the Insert resulted in 17 hits in the database. Among them, 7 similar

structures ((O)sW=C-Aryl) could be identified. The relevant geometries are T
summarized below. o o

Table S1. CSD search results

CCDC refcode W=C bond length (A) C-C-W bond angle (°)
COXVOA and COXVOA10 1.757 175.79
FEWPOO 1.760 176.01
UJEYUE 1.745 174.07
VIZVOS 1.759 177.91
WEJCEW 1.769 173.67
YITCIQ 1.763 178.50
Average of this study 1.778 174.52

A comparison of bond lengths and angles shows that they are in good agreement with known
alkoxytungsten-alkylidyne complexes, albeit the W=C distance is the longest in this study. It is
important to mention, that all of the listed literature structures are monomeric entities.
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Figure S10. Plot of the molecular structure of complex 1f; atomic displacement ellipsoids shown at the
50 % probability level, H-atoms are omitted for clarity. Color code: Mo = grey, O =red, Si = orange.

X-ray Crystal Structure Analysis of complex Complex 1f: C45 Hsq Mo Os Sis, M, = 823.09 gmol?, yellow
prism, crystal size 0.12 x 0.10 x 0.06 mm?3 triclinicc P-1 [2], a = 10.1902(8) A,
b = 11.108(3) A, ¢ = 20.652(5) A, o = 95.927(14)°, B = 97.963(15)°, y = 114.883(13)°,
V = 20659(7) A3, T = 100(2) K, Z = 2, Dee = 1323 gcmd, 1 = 0.71073 A,
u(Mo-K,) = 0.443 mm™, Gaussian absorption correction (Tmin = 0.95095, Tmax = 0.97694), Bruker AXS
Enraf-Nonius KappaCCD diffractometer with a FR591 rotating Mo-anode X-ray source, 2.613 < 6 <
33.195°, 75165 measured reflections, 15720 independent reflections, 10753 reflections with / > 20(/),
Rint = 0.0915. The structure was solved by SHELXS and refined by full-matrix least-squares (SHELXL)
against F>to R; = 0.0522 [/ > 20(/)], wR2 = 0.1294, 477 parameters. CCDC-2088379
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The automatic indexing gave these results:

50 reflections from the peaklist fit this lattice, O do not

If this is not correct, please run dirax and find the cell manually.

{Input cell : a=10.1784 b=11.1279 c=20.6376 alpha=95.917 beta=97.920 gamma=114.781 P
Reduced cell : a=10.1784 b=11.1279 c=20.6376 alpha=95.917 beta=97.920 gamma=114.781
Conventional : a=10.1784 b=11.1279 c=20.6376 alpha=95.917 beta=97.920 gamma=114.781 P
Yolume : 2068.11; System: triclinic; Point group: —1}
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Figure S11. Crystal faces and unit cell determination of complex 1f.

INTENSITY STATISTICS FOR DATASET

A
min [0—
v

Linear scale
Logarithmic scale

Image min : -1452

Next file
Previous file
Next set
Previous set
Redisplay

Resolution #Data #Theory %Complete Redundancy Mean I Mean I/s Rmerge

Rsigma

30.

s N == SN
WCONNOJON

PR NNDWWS O oy 0

Inf - 2.59 238 248 96.0 9.71 106.70
2.59 - 1.76 550 552 99.6 6.78 50.26
1.76 - 1.39 812 813 99.9 6.15 39.66
1.39 - 1.22 769 769 100.0 5.95 28.82
1.22 - 1.11 777 777 100.0 5.81 21.69
1.11 - 1.03 793 793 100.0 5.66 18.64
1.03 - 0.97 798 798 100.0 5.48 14.58
0.97 - 0.92 807 807 100.0 5.22 12.53
0.92 - 0.88 801 801 100.0 5.03 12.00
0.88 - 0.84 931 931 100.0 4.79 10.86
0.84 - 0.81 863 864 99.9 4.60 9.56
0.81 - 0.79 626 626 100.0 4.44 8.62
0.79 - 0.77 705 705 100.0 4.38 7.59
0.77 - 0.75 777 777 100.0 4.23 6.75
0.75 - 0.73 860 860 100.0 3.99 5.81
0.73 - 0.71 979 979 100.0 3.91 5.45
0.71 - 0.70 521 521 100.0 3.73 4.91
0.70 - 0.68 1122 1122 100.0 3.67 4.09
0.68 - 0.67 655 655 100.0 3.58 4.12
0.67 - 0.66 670 672 99.7 3.44 3.63
0.66 - 0.65 667 767 87.0 2.95 3.26
0.75 - 0.65 5474 5576 98.2 3.63 4.53

Inf - 0.65 15721 15837 99.3 4.75 14.60

One reflection (4 -3 3) was omitted from dataset before the final refinement cycles. Complete .cif-data

of the compound are available under CCDC-2088379.
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Figure S12. The molecular structure of complex 1f, showing the significantly different Mo-O-Si angles
(top) and the arrangement of the basal phenyl ring with respect to the alkylidyne moiety (bottom).
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Crystal Structure Survey. A search for similar structures in the CSD

database (performed on May 28, 2021 using ConQuest 2020.2.0; i
CSD version 5.41 (November 2019) + 1 update) performed with the T4
input shown in the Insert resulted in 8 hits in the database. Two of /MD\
them are very similar structures with a tridentate ligands and the S © © S
remaining six structures containing three individual monodentate ©
ligands. There relevant geometries are summarized below.
S|
Table S2. CSD search results
Refcode  MOOLSIL  Mo-02Si2 Mo-03-5i3 Mo=C ~ Mo-01  Mo-02  Mo-03 ligand Si substi-
(*) (°) (®) (A) (A) (A) (A) type tuent
QOSSAV 172.145 161.593 168.544 1.746  1.878 1.870 1.861 tridentate aryl
QOSSEZ 166.533 165.165 161.897 1.741  1.866 1.877 1.882 tridentate aryl
QOSSID 160.175 139.936 147.255 1.748  1.880 1.892 1.880  monodentate aryl
Q0SS0 173.494 145.472 143.408 1.749  1.876 1.884 1.893  monodentate aryl
LEKFOY 154.099 146.365 169.420 1.748  1.887 1.886 1.881  monodentate aryl
LEKHAM 159.456 147.725 141.255 1.745  1.884 1.880 1.887  monodentate aryl
LEKHAM 142.463 162.902 149.908 1.747  1.890 1.876 1.882  monodentate aryl
POJDEZ 145.047 143.963 147.999 1.730  1.888 1.889 1.892  monodentate OtBu
POJDUP 164.085 147.633 145.704 1.734  1.843 1.877 1.885  monodentate OtBu
POJDUP 144.533 124.646 148.746 1.741  1.901 1.918 1.884  monodentate OtBu
1f 158.74 149.70 174.96 1.751  1.869 1.890 1.893 tridentate alkyl

Figure S13. Comparison of the distances between the central Mo atom and calculated centroids of the
basal aryl ring of the tripodal ligand framework: Complex 1f (left), QOSSAV (middle) and QOSSEZ (right).
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Figure S14. The local environments of the Mo atoms in complex 1f (black), QOSSAV (red) and QOSSEZ
(yellow).
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General. Unless stated otherwise, all reactions were carried out under Ar in flame-dried glassware.
The solvents were purified by distillation over the drying agents indicated and were transferred under
Ar: THF, Et,0, 1,4-dioxane (Mg/anthracene), CH,Cl,, DME, MeCN (CaH,), n-pentane, benzene, toluene
(Na/K). Flash chromatography on silica gel (FC): Merck silica gel 60 (230-400 mesh).

All commercially available compounds (Fluka, Lancaster, Aldrich) were used as received, unless stated
otherwise. The molecular sieves used in this investigation were dried for 24 h at 150°C (sand bath)
under vacuum prior to use and were stored and transferred under argon atmosphere.

IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers (v ) in cm™. MS (El): Finnigan MAT 8200
(70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX Il FT-MS (7 T magnet)
or Mat 95 (Finnigan). Elemental analysis: H. Kolbe, Miilheim/Ruhr.

NMR: Spectra were acquired on Bruker Avancelll 400, 500 MHz or AVneo 600 MHz NMR spectrometers
in the solvents indicated; the AVnheo 600 MHz NMR spectrometer was equipped with a Bruker BBO
CryoProbe, which significantly reduced the measurement time of most of the spectra, especially the
1D 3C NMR data.

Chemical shifts (8) are given in ppm relative to TMS, coupling constants (/) in Hz. The solvent signals
were used as references and the chemical shifts converted to the TMS scale (CDCls: 6¢c = 77.0 ppm;
residual CHCl3 in CDCls: &4 = 7.26 ppm; CD,Cly: 6¢ = 53.8 ppm; residual CHDCl,: 64 = 5.32 ppm; [Ds]-
toluene: 6¢ = 20.4 ppm; residual DsC¢CD,H: &4 = 2.09 ppm).

%Mo NMR spectra were acquired with the aring pulse sequence to minimize acoustic ringing from the
NMR probe. The /2 pulse was calibrated for a 2 m Na,MoO, in D,0 and had a typical length of 22.5 ps
at a power of 85W. Chemical shifts were referenced indirectly to the *H chemical shift of the solvent.!
For broad signals, larger amounts of the sample (> 40 mg) were necessary. Dependent on the line width
of the signal, 8000 to 150000 FID containing 8192 complex data points were averaged to obtain a
reasonable signal-to-noise ratio. The acquisition time of a single FID was around 150 ms. The data was
Fourier-transformed with zero-filling to 8192 data points and with a line broadening Ib = 20 Hz, unless
noted otherwise.

Diffusion coefficients were obtained from a double stimulated echo sequence with bipolar gradient
pulses, convection compensation, longitudinal eddy current delay (LED) and three spoiler gradients
(Bruker sequence: dstebpgp3s). The gradient pulse strength G was incremented from 2% to 98% of the
maximum Gmax With a squared gradient ramp in 60 steps. The diffusion time (A) used was 71 ms and
the length of a gradient pulse gradient pulse (6/2) of the encoding gradient was 1.3 ms. The maximum
gradient strength Gmax of the NMR probe (PA BBO 400S1 BBF-H-D-05 Z PLUS) was 53.5 G-cm™. Diffusion
coefficients were obtained by averaging three diffusion coefficients obtained from fitting the signal
decay of three different resonance integrals to the Stejskal-Tanner equation (1) in the Bruker TOPSPIN
T1T2 relaxation module:

1(6) = Ioe—D(VG5)2(A—5/3) (1)

Diffusion values were predicted using an EXCEL spreadsheet Stokes—Einstein Gierer-Wirtz Estimation
(SEGWE) method.?
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New Ligands.

(5'-(2-(Diethylsilyl)phenyl)-[1,1':3',1"-terphenyl]-2,2"-diyl)bis(diethylsilane) (S1).> A two-necked,
Et round-bottomed flask was equipped with a magnetic stir bar and a gas
Et HiJ/—~Et | . .
Er) H Si inlet connected to an argon-vacuum manifold. The flame-dried flask was
Si H /@ filled with argon and charged with 1,3,4-tris-2’-bromophenylbenzene
O \S(Et (2.00 g, 3.68 mmol)** and Et,0 (77 mL). The resulting mixture was cooled
Bt to -125 °C (pentane/liquid nitrogen bath). A solution of tert-butyllithium
D (14.2 mL, 22.6 mmol, 1.6 M in n-pentane) was added dropwise and the
resulting mixture was allowed to warm to ambient temperature. After
stirring for 1 h, the mixture was cooled to —125 °C and diethylsilane (2.86 mL, 22.1 mmol) was added
dropwise. The mixture was then warmed to ambient temperature and stirring was continued
overnight. The reaction was carefully quenched with water and the resulting mixture was transferred
into a separation funnel. The organic phase was separated and the aqueous solution was extracted
with ethyl acetate (3 x 50 mL). The combined organic layers were dried over MgSQ,, filtered and
concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexanes/ethyl
acetate, 10:1) to give the title compound as a colorless solid (1.9 g, 91%). *H NMR (400 MHz, CDsCl):
6=7.58-7.54 (m, 3H), 7.42 —7.36 (m, 3H), 7.35-7.28 (m, 6H), 7.22 (s, 3H), 4.13 (p, J/ = 3.4 Hz, 3H),
0.84 (t, J = 7.8 Hz, 18H), 0.60 (m, 12H). *C NMR (101 MHz, CDCl3): § = 149.4, 143.1, 136.0, 134.2,
129.6,129.1,128.9,126.4, 8.5, 4.2. IR (film): ¥ 3051, 2952, 2872, 2102, 1583, 1558, 1460, 1409, 1378,
1260, 1230, 1124, 1098, 1063, 1006, 970, 891, 873, 736, 686, 640, 623, 607, 527, 458 cm™. HRMS-
APPI (m/z): calcd. for CsgHasSiz [M]™*, 564.30584; found, 564.30642.

Compound S2. A 50 mL, two-necked flask equipped with an argon manifold was charged with 1,3,4-

Bug, tris-2’-bromophenylbenzene (300 mg, 0.55 mmol)*®> and diethyl ether
P

n-Bu H—Si (20 mL). The resulting mixture was cooled to -125 °C using a bath of n-
H-BU\Si_H I)

pentane and liquid nitrogen. A solution of tert-butyllithium (2.10 mL,

“si—n-Bu  3.37 mmol, 1.6 M in n-pentane) was added dropwise and the mixture was
allowed to warm to ambient temperature. After stirring for 1 h, the mixture
was cooled to -125 °C before di-n-butyl silane (0.64 mL, 3.31 mmol) was
added dropwise. The mixture was then warmed to ambient temperature
and stirring was continued overnight. The reaction was carefully quenched with water (15 mL), the
layers were separated and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The
combined organic layers were dried over magnesium sulfate, filtered, and the filtrate was evaporated.
The residue was purified by flash chromatography on silica gel (n-pentane) to give the title compound
as a colorless oil (362 mg, 89%). *H NMR (500 MHz, CDCl3) 6 7.58 (ddd, J = 7.4, 1.6, 0.6 Hz, 3H), 7.41 —
7.28 (m, 9H), 7.23 (s, 1H), 4.17 (p, J = 3.6 Hz, 3H), 1.25 - 1.11 (m, 24H), 0.78 — 0.69 (m, 18H), 0.69 —
0.55 (m, 12H). **C NMR (126 MHz, CDCls) 6§ 149.3, 143.1, 136.0, 134.7,129.5, 129.0, 128.9, 126.4, 27.1,
26.3, 13.8, 12.7. ?°Si NMR (99 MHz, CDCl3) 6 -10.4. IR (film): ¥ 2955, 2920, 2871, 2855, 2103, 1583,
1464, 1408, 1377, 1189, 1123, 1098, 1080, 1064, 1027, 889, 805, 757, 731, 686, 635, 623, 460. HRMS
(ESI) calcd. for CagH71Sis [M-H]™: 731.48691; found: 731.48625.
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Compound S3.3 A two-necked, round-bottomed flask was equipped with a magnetic stir bar and a gas
inlet connected to an argon-vacuum manifold. The flame-dried flask was
Pr > filled with argon and charged with 1,3,4-tris-2’-bromophenylbenzene
iPr\\ H pr (1.50 g, 2.76 mmol)** and Et,0 (58 mL). The resulting mixture was cooled
> H to -125 °C (pentane/liquid nitrogen bath). A solution of tert-butyllithium
O \Sig\ipr (8.94 mL, 17.0 mmol, 1.9 M in n-pentane) was added dropwise and the
pr  Mixture was allowed to warm to ambient temperature. After stirring for
D 1 h at ambient temperature, the mixture was cooled to -125 °C before
di-iso-butylchlorosilane (3.07 mL, 16.6 mmol) was added dropwise. The
mixture was warmed to ambient temperature and stirring was continued overnight. The reaction was
carefully quenched with water and the resulting mixture was transferred into a separation funnel. The
organic phase was separated and the aqueous solution extracted with ethyl acetate (3 x 50 mL). The
combined organic layers were dried over MgSQ,, filtered and concentrated in vacuo. The residue was
purified by flash chromatography on silica gel (hexanes/t-butyl methyl ether, 99:1) and the product
dried in high vacuum (70°C, 10~3 mbar, 3 h) to give the title compound as a colorless oil (1.56 g, 77%).
'H NMR (600 MHz, CD5Cl): 6 = 7.64 (ddd, J = 7.4, 1.4, 0.6 Hz, 3H), 7.40 — 7.36 (m, 6H), 7.35 - 7.31 (m,
3H), 7.27 (s, 3H), 4.35 - 4.28 (m, 3H), 1.68 — 1.57 (m, 6H), 0.82 — 0.75 (m, 36H), 0.68 — 0.56 (m, 12H).
13C NMR (151 MHz, CDCls): & = 149.3, 143.0, 136.3, 135.1, 129.6, 129.1, 129.0, 126.4, 26.1, 25.7, 25.5,
24.3. Si NMR (119 MHz, CDCls): 6 =-14.4. IR (film): ¥ 3053, 2952, 2895, 2867, 2826, 2113, 1584, 1558,
1463, 1408, 1382, 1364, 1328, 1261, 1203, 1163, 1124, 1085, 1034, 950, 891, 849, 759, 740, 723, 637,
623,527, 461, 417 cm™*. HRMS-APPI (m/z): calcd. for CasH7Sis [M]*, 732.49364; found, 732.49398.

Compound S4. A 100 mL, three-necked flask equipped with a 25 mL dropping funnel and an argon

/n-octyltl manifold was charged with 1,3,4-tris-2’-bromophenylbenzene (1.00 g,
n-oc

n-octyl H—siC " 184 mmol)**> and diethyl ether (60 mL). The resulting mixture was cooled
n-octy~g; I) to -125 °C using a bath of n-pentane and liquid nitrogen. A solution of

Sgi—n-octyl  tert-butyllithium (6.60 mL, 11.2 mmol, 1.7 M in n-pentane) was added
dropwise via the dropping funnel and the mixture was allowed to warm
to ambient temperature. After stirring for 1 h, the mixture was cooled to
-125 °C before di-n-octyl silane (2.36 g, 9.21 mmol) was added dropwise.
The mixture was then allowed to warm to ambient temperature and stirring was continued for 3 d.
The reaction was carefully quenched with ethanol (3 mL) and water (40 mL). The layers were separated
and the aqueous layer was extracted with diethyl ether (3 x 40 mL). The combined organic layers were
dried over magnesium sulfate, filtered, and the solvents were evaporated. The residue was purified by
flash chromatography (n-pentane) to give the title compound as a yellow liquid (1.00 g, 51%). *H NMR
(500 MHz, CDCl5) & 7.60 (ddd, J = 7.3, 1.5, 0.6 Hz, 3H), 7.40 (td, J = 7.7, 7.2, 1.5 Hz, 3H), 7.36 (ddd, J =
7.7, 1.5, 0.6 Hz, 3H), 7.33 (td, J = 7.2, 1.5 Hz, 3H), 7.27 (s, 3H), 4.19 (p, / = 3.6 Hz, 3H), 1.31 - 1.08 (m,
72H), 0.86 (t, J = 7.2 Hz, 18H), 0.66 — 0.58 (m, 12H). 3C NMR (126 MHz, CDCl5) 6 149.3, 143.1, 136.0,
134.7,129.5,129.0,128.9,126.4,33.5,32.1, 29.4,29.4, 25.0, 22.8, 14.3, 13.0. °Si NMR (99 MHz, CDCls)
6 -10.3. IR (film): ¥ 2956, 2920, 2851, 2127, 2102, 1465, 1409, 1123, 1099, 1064, 1002, 915, 891, 871,
834, 810, 758, 721, 686, 635, 623, 460. HRMS (ESI) calcd. for C7,H120Sis [M]*: 1068.8692; found:
1068.8700.
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Ligand 3f.3 A one-neck round bottomed flask equipped with a stir bar was charged with silane S1 (222
mg, 0.393 mmol) and CH,Cl; (5 mL). The resulting mixture was cooled to

Et
Et HO\Si//Et 0 °C. m-Chloroperbenzoic acid (77% w/w, 291 mg, 1.30 mmol) was added
OH . . . .
Et\\Si/ /@ in portions and the mixture was allowed to warm to ambient
HO.

\ = temperature. After 4 h, the mixture was carefully transferred into a
. -
O Q SI\Et separation funnel, diluted with CH,Cl; (10 mL), and washed with sat.

NaHCOs (4 x 15 mL) and brine (3 x 10 mL). The organic phase was then

O dried over MgSO0,, filtered and concentrated in vacuo to give the title

compound as a colorless solid material (240 mg, 99%). *H NMR (400 MHz,

CDCl3): 6 = 7.51 — 7.47 (m, 3H), 7.43 — 7.33 (m, 6H), 7.33 — 7.30 (m, 3H), 7.24 (s, 3H), 0.90 — 0.85 (m,

18H), 0.75 (m, 12H). 13C NMR (101 MHz, CDCls): & = 149.0, 144.1, 135.9, 134.6, 129.9, 128.9, 127.6,

126.4, 8.2, 6.9. °Si NMR (119 MHz, CDCl5): § = 7.7. IR (film): ¥ 3318, 3051, 2955, 2912, 2875, 1583,

1558, 1461, 1410, 1378, 1260, 1235, 1162, 1124, 1090, 1065, 1005, 959, 908, 888, 822, 760, 711, 615,
530, 512, 465 cm™. HRMS-ESI (m/z): calcd. for CsgH4703Sis [M-H], 611.28386; found, 611.28383.

Ligand 3g. A 50 mL, one-necked flask open to air was charged with silane S2 (362 mg, 0.49 mmol) and

/n—Bnu_Bu dichloromethane (5 mL). The resulting mixture was cooled to 0°C. m-
[~

n-Bu Ho—Si Chloroperoxybenzoic acid (77% w/w, 365 mg, 1.63 mmol) was added in
nBU~si—oH portions and the resulting mixture stirred at ambient temperature for 5 h.

si—n-Bu  The mixture was diluted with dichloromethane (30 mL), transferred into a
e separation funnel, and washed with saturated aqueous solutions of sodium
bicarbonate (3 x 50 mL) and brine (50 mL). The organic layer was dried over
magnesium sulfate, filtered, and the solvents were evaporated to give the
title compound as a white solid material (273 mg, 71%). *H NMR (500 MHz, CDCls) § 7.49 (dd, J = 7.3,
1.6 Hz, 3H), 7.42 — 7.31 (m, 9H), 7.27 (s, 3H), 3.56 (s, 3H), 1.31 — 1.14 (m, 27H), 0.82 — 0.67 (m, 27H).
13C NMR (126 MHz, CDCls) 6 148.6, 144.0, 136.4, 134.5, 129.5, 128.7, 127.6, 126.2, 26.4, 25.2, 16.8,
13.5. 29Si NMR (99 MHz, CDCls) & 5.8. IR (film): 3298, 3051, 2956, 2922, 2871, 2857, 1584, 1464, 1409,
1377, 1194, 1124, 1080, 1024, 999, 964, 884, 826, 760, 735, 724, 481. HRMS (ESI) calcd. for

CagH7,03SisNa [M+Na]*: 803.46815; found: 803.46770.

Ligand 3h.2 A two-neck round bottomed flask equipped with a stir bar was charged with silane $3 (563

iPr mg, 0.768 mmol) and CH,Cl, (10 mL). The resulting mixture was

iPr HO > cooled to 0 °C. m-Chloroperbenzoic acid (77% w/w, 568 mg, 2.53

"Pr\\Q _OH \Si/\iPr mmol) was added in portions and the resulting mixture was allowed
Si

HO. to warm to ambient temperature. After 4 h, the mixture was

O Q Si/\iPr carefully transferred into a separation funnel, diluted with CH,Cl, (10

\iPr mL) and washed with sat. NaHCOs; (4 x 15 mL) and brine (3 x 10 mL).

O The organic phase was then dried over MgSQ,, filtered and

concentrated in vacuo to give the title compound as a colorless solid

material (584 mg, 97%). *H NMR (600 MHz, CDCl3): § = 7.54 — 7.51 (m, 3H), 7.40 — 7.36 (m, 3H), 7.34 -

7.32 (m, 6H), 7.27 (s, 3H), 1.75 (hept, J = 6.6 Hz, 6H), 0.80 (m, 36H), 0.78 —0.69 (m, 12H). 3C NMR (151

MHz, CDCls): 6§ = 148.5, 144.1, 137.4,135.0, 129.7, 128.9, 127.9, 126.2, 28.5, 26.6, 26.3, 24.3. °Si NMR

(119 MHz, CDCls): 6 = 4.5. IR (film): V 3449, 2951, 2924, 2894, 2866, 1584, 1463, 1435, 1409, 1381,

1364, 1328,1219,1163, 1123, 1088, 1064, 1033, 951, 908, 889, 830, 814, 759, 733, 667, 643, 622, 528,
487, 468 cm™. HRMS-ESI (m/z): calcd. for CagH7205SisNa [M+Na]*, 803.46815; found, 803.46891.
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Ligand 3i. A 50 mL, one-necked flask open to air was charged with silane $S4 (999 mg, 0.93 mmol) and

p-octyl dichloromethane (25 mL). The resulting mixture was cooled to 0°C.
| -n-octyl

n-octyl Ho—Si
n-octyl—4&. o, in portions and the resulting mixture was stirred at ambient temperature

m-Chloroperoxybenzoic acid (77% w/w, 690 mg, 3.08 mmol) was added

for 5h. The mixture was diluted with dichloromethane (40 mL),
transferred into a separation funnel, and washed with saturated aqueous
solutions of sodium bicarbonate (3 x50 mL) and brine (50 mL). The

organic layer was dried over magnesium sulfate, filtered, and the
solvents were evaporated. The residue was purified by flash column chromatography (n-pentane /tert-
butyl methyl ether, 50:1) to give the title compound as a colorless oil (898 mg, 86%). *H NMR (600
MHz, CDCl5) 6 7.48 (dd, J = 7.3, 1.5 Hz, 3H), 7.38 (td, / = 7.5, 1.5 Hz, 3H), 7.34 (td, J = 7.3, 1.4 Hz, 3H),
7.31(dd, J=7.5, 1.4 Hz, 3H), 7.25 (bs, 3H), 3.62 (s, 3H), 1.30 — 1.03 (m, 72H), 0.86 (t, J = 7.2 Hz, 18H),
0.80-0.66 (m, 12H). 3C NMR (151 MHz, CDCls) 6 148.8, 144.1, 136.6, 134.7,129.7, 128.9, 127.8, 126.4,
33.7,32.1, 29.4, 29.3, 23.3, 22.8, 17.2, 14.3. Si NMR (119 MHz, CDCls) § 5.6. IR (film): ¥ 3250, 2956,
2921, 2853, 1466, 833, 760, 722, 737. HRMS (ESI) calcd. for C7,H11503Sis [M—-H]™: 1115.84726; found:
1115.84780.

New Complexes

Complex 1f. A 100 mL Schlenk flask was equipped with a magnetic stir bar and flame dried under

vacuum. The flask was filled with argon and charged with ligand 3f (1.23 g,

2.01 mmol), which was azeotropically dried with benzene (3 x 5 mL) to

remove residual water. Toluene (28 mL) was added and the mixture
I l,o\ /__gt vigorously stirred for 10 min to obtain a clear solution. Next, a solution of
3 ® complex 4a (925 mg, 2.14 mmol)* in toluene (15 mL) was added dropwise
and stirring was continued for 4 h at ambient temperature. The solvent was
removed in vacuo and the crude solid was extracted with n-pentane (5 x 15
mL) to give a yellow/orange powder containing only the monomeric
complex 1f (1.63 g, 99%); this sample was ca. 97% pure according to NMR.
'H NMR (600 MHz, [Dg]-toluene): § = 7.44 (s, 3H), 7.43 = 7.39 (m, 3H), 7.26
—7.21(m, 3H), 7.20-7.14 (m, 6H), 6.80 —6.76 (m, 2H), 6.65 (t, J = 7.5 Hz, 1H), 2.68 (s, 6H), 1.01 - 0.96
(m, 18H), 0.95—0.86 (m, 12H). 3C NMR (151 MHz, [Ds]-toluene): & = 305.8, 149.2, 145.0, 144.2, 137.9,
135.9,134.2,130.4,128.6, 127.6, 127.0, 126.3, 126.2, 20.4, 9.1, 6.8. *°Si NMR (119 MHz, [Dg]-toluene):
5 =11.8. Mo NMR (26 MHz, 60°C, [Dg]-toluene): 6§ =416.9 . IR (film): #3051, 2952, 2931, 2909, 2872,
1581, 1557, 1460, 1429, 1407, 1375, 1259, 1232, 1161, 1122, 1088, 1063, 1044, 1012, 1002, 912, 761,
725, 697, 668, 624, 584, 552, 528, 513, 479, 460, 420 cm™. HRMS-ESI (m/z): calculated for
CasHsaMoOsSis* [M]*: 824.24293; found, 824.24333. Elemental analysis (%) calcd. for C4sHsaMoOs3Sis: C
65.66, H 6.61, Mo 11.66, Si 10.24; found: C 64.10, H 6.47, Mo 11.27, Si 9.87 (for the sample that is ca.
97% pure, cf. copies of spectra).

Yellow crystals suitable for single-crystal X-ray diffraction were grown from a concentrated Et,0O
solution at —20°C
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Complex 1g. A 100 mL Schlenk flask was charged with ligand 3g (255 mg, 0.33 mmol), which was
azeotropically dried with benzene (2 x5 mL) to remove residual water. The
ligand was dissolved in toluene (30 mL). A solution of the molybdenum

n-Bu alkylidyne complex 4a (148 mg, 0.33 mmol)* in toluene (15 mL) was added

/_n-Bu
08I . - : . .
Buy /O—Mdi ;@ dropwise and stirring of the mixture was continued for 4 h at ambient
SUsi . .
N\ temperature. The solvent was removed in vacuo and the crude material was

O,

Q S D Sree extracted with n-pentane (5 x 15 mL) to give the title complex as a yellow
O powder. In order to obtain pure material, the crude product was dissolved in
n-pentane (1 mL) and the complex precipitated by storing the solution at
-30 °C for 3 h (169 mg, 58%). *H NMR (600 MHz, [Ds]-toluene) & 7.52 — 7.49 (m, 6H), 7.28 — 7.22 (m,
3H), 7.22 — 7.16 (m, 6H), 6.77 (d, J = 7.4 Hz, 2H), 6.65 (t, ) = 7.5 Hz, 1H), 2.70 (s, 6H), 1.52 — 1.34 (m,
12H), 1.26 (h, J = 7.4 Hz, 12H), 1.06 — 0.95 (m, 12H), 0.72 (t, J = 7.3 Hz, 18H). 3C NMR (151 MHz, [Ds]-
toluene) 6 306.1, 149.4, 145.4, 144.6, 138.3, 137.2, 134.8, 130.7, 129.1, 128.3, 127.4, 126.6, 126.6,
26.9, 26.0, 20.9, 18.4, 13.7. °Si NMR (119 MHz, [Ds]-toluene) & 9.9. **Mo NMR (26 MHz, [Dg]-toluene)
6 419.6. IR (film): ¥ 2953, 2920, 2869, 2854, 1461, 1408, 1123, 992, 882, 865,830, 758, 722, 698, 658,
464. HRMS (ESI) calcd. for Cs7H7sM005Sis [M+H]*: 993.43856; found, 993.43965. Elemental analysis (%)

calcd. for Cs7H78M003Si3: C 69.05, H 7.93, Mo 9.68; found: C 67.00, H 7.75, Mo 9.37.

Complex 1h. A 100 mL Schlenk flask was charged with ligand 3h (271 mg, 0.35 mmol), which was
azeotropically dried with benzene (2 x 4 mL) to remove residual water. The
ligand was dissolved in toluene (40 mL). A solution of the molybdenum
alkylidyne complex 4a (150 mg, 0.35 mmol)* in toluene (7 mL) was added
dropwise and stirring of the mixture was continued for 5 h at ambient
temperature. The solvent was removed in vacuo and the obtained brown
residue was extracted with n-pentane (6 mL). The solution was concentrated
in vacuo until 2 mL remained and stored at —78 °C for 2 h. The title complex

precipitated as a yellow solid material, which was collected by removal of the
supernatant at -78 °C and subsequent drying under high vacuum for 2 h (296 mg, 86%). *H NMR (600
MHz, [Ds]-toluene) & 7.57 —7.51 (m, 3H), 7.51 (s, 3H), 7.28 — 7.22 (m, 3H), 7.21 — 7.16 (m, 6H), 6.78 (d,
J=7.6 Hz, 2H), 6.65 (t, J = 7.6 Hz, 1H), 2.73 (s, 6H), 2.08 — 1.96 (m, J = 6.7 Hz, 6H), 1.03 (d, / = 6.9 Hz,
12H),0.89 (d, J= 6.6 Hz, 18H), 0.87 (d, J = 6.6 Hz, 18H). 1*C NMR (151 MHz, [Dg]-toluene) § 306.4, 149.1,
145.4, 144.7, 138.2, 137.7, 135.2, 130.7, 129.1, 127.5, 126.6, 126.5, 30.1, 26.9, 26.6, 24.7, 21.4. *Si
NMR (119 MHz, [Ds]-toluene) 6 9.0. *>Mo NMR (26 MHz, [Ds]-toluene) 6 432.7. IR (film): i/ 2950, 2865,
1462, 1122, 1089, 1003, 914, 872, 829, 763, 741, 715, 470. HRMS: decomp. Elemental analysis (%)
calcd. for Cs7H7sM00s3Sis: C 69.05, H 7.93, Mo 9.68, Si 8.50; found: C 68.84, H 7.91, Mo 9.64, Si 8.51.

Complex 1i. A 250 mL Schlenk flask was charged with ligand 3i (405 mg, 0.36 mmol), which was
azeotropically dried with benzene (3 x 4 mL) to remove residual water. The
ligand was dissolved in toluene (40 mL). A solution of the molybdenum

oo alkylidyne complex 4a (156 mg, 0.36 mmol)* in toluene (10 mL) was added
—si

octyl /o_,\l,ldf S dropwise and stirring of the mixture was continued for 5 h at ambient
n-octyl~ 0

temperature. The solvent was removed in vacuo and the obtained brown
residue was extracted with pentane (6 mL). The solution was concentrated
in vacuo until 2 mL remained and stored at -78 °C for 3 d. The title complex

precipitated as a yellow solid material, which was collected by removal of
the supernatant at =78 °C and drying of the residue by three freeze-pump-thaw cycles (140 mg, 30%).
H NMR (600 MHz, [Ds]-toluene) § 7.58 —7.54 (m, 3H), 7.53 (s, 3H), 7.29 - 7.25 (m, 3H), 7.25-7.19 (m,
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6H), 6.80 (d, J = 7.6 Hz, 2H), 6.67 (t, / = 7.6 Hz, 1H), 2.74 (s, 6H), 1.58 — 1.43 (m, 12H), 1.33 — 1.24 (m,
24H), 1.24 — 1.15 (m, 24H), 1.14 — 1.08 (m, 12H), 1.06 (t, J = 8.5 Hz, 12H), 0.92 (t, J = 7.2 Hz, 18H). 3C
NMR (151 MHz, [Ds]-toluene) & 306.1, 149.4, 145.4, 144.6, 138.2, 137.2, 134.8, 130.7, 129.1, 128.3,
127.4,126.7,126.6,34.2,32.4,29.9,29.6, 24.0,23.2,21.1,18.8, 14.4. Si NMR (119 MHz, [Ds]-toluene)
5 9.7. °>Mo NMR (26 MHz, [Ds]-toluene) 6 419.7. IR (film): ¥ 2955, 2920, 2852, 1464, 1122, 991, 885,
863, 832, 761, 738, 721, 703, 662, 461. HRMS: decomp. Elemental analysis (%) calcd. for
Cs1H126M00s3Sis: C 73.25, H 9.56, Mo 7.23, Si 6.34; found: C 72.17, H 9.56, Mo 7.12, Si 6.51.

Complex 8. A 25 mL Schlenk flask was charged with complex 1a (40 mg, 50 umol)* and toluene
(1.5 mL). 2-Butyne (8.5 pL, 0.11 mmol) was added and the
O mixture stirred at ambient temperature for 2 h. All volatile

Me-\

me'e Me Ve
Q \éigs("wle O,Si materials were removed in vacuo. The residue was washed
Q o\M§ o 0 with n-pentane (3 x 3 mL) and dried under high vacuum for
0 ] \O\ 5 h gave the title complex as a red solid material (22 mg,
O S‘mne ' -e 65%). 'H NMR (600 MHz, [Ds]-toluene) § 7.57 —7.52 (m, 6H),

7.18 (s, 6H), 7.16 — 7.11 (m, 12H), 7.05 — 7.03 (m, 6H), 0.61
(s, 36H); 3C NMR (151 MHz, [Ds]-toluene) & 148.2, 143.7,
139.5, 134.9, 129.7, 129.3, 127.9, 126.9, 5.1; 2°Si NMR (119 MHz, [Ds]-toluene) & 9.1; ®*Mo NMR (26
MHz, [Ds]-toluene) & 2631.5; IR (film): ¥ 2967, 2906, 1408, 1248, 1126, 1091, 1069, 1028, 925, 823,
803, 783, 762, 739, 722, 693, 666, 641, 453; HRMS (ESI) calculated for CgoHesM0,06Sis [M]*:
1246.15777; found: 1246.15948; Elemental analysis (%) calculated for CeoHesM0,06Sis: C 57.94, H 5.35,
Mo 15.43, Si 13.55; found: C 57.90, H 6.27, Mo 15.47, Si 13.41.

<

Oy,

=
=\
Z—w
o_/
=

Complex 6.3 A 500 mL Schlenk flask was equipped with a magnetic stir bar and was flame dried under
vacuum. The flask was filled with argon and charged with ligand 11 (1.03 g,
1.98 mmol), which was azeotropically dried with benzene (3 x 5 mL) to
remove any residual water. Toluene (148 mL) was added and the mixture
was vigorously stirred for 10 min to obtain a clear solution. A solution of
complex 7b (1.03 g, 1.98 mmol) in toluene (30 mL) was then added dropwise
to the vigorously stirred mixture. After stirring for 2 h at ambient
temperature, the solvent was removed in vacuo to give the title complex as
an orange powder (1.62 g, quant.). For the concentration-dependent
equilibration with the cyclotetrameric complex 12, see the copies of the pertinent NMR spectra. The
monomeric complex analyzed as follows: 'H NMR (600 MHz, [Ds]-toluene): 6§ 7.30 (dd, J = 7.4, 1.7 Hz,
3H), 7.29 (s, 3H), 7.15 (td, J = 7.4, 1.6 Hz, 3H), 7.12 (td, J = 7.3, 1.7 Hz, 3H), 6.99 (d, J = 7.5 Hz, 2H), 6.93
(dd, J = 7.4, 1.6 Hz, 3H), 6.65 (t, J = 7.5 Hz, 1H), 3.07 (s, 6H), 2.73 (s, 6H), 1.30 (s, 18H). 3C NMR (151
MHz, [Dg]-toluene): & = 264.0 (U-183W-13C = 292.7 Hz), 145.6 (Y-183W-13C = 44.2 Hz), 144.5, 143.3,139.5,
136.4, 133.4, 132.6, 128.3, 127.1, 127.0, 126.8, 125.2, 83.9, 49.3, 31.4, 22.1. 3W NMR (17 MHz, [Ds]-
toluene): & = 114.2. IR (film): ¥ 3032, 2973, 2922, 1458, 1478, 1363, 1377, 1207, 1227, 1170, 1124,
1098, 972, 984, 999, 940, 896, 872, 786, 814, 757, 739, 675, 624, 639, 572, 590, 535, 558, 512, 472,
415 cm*. HRMS: decomp.; Elemental analysis (%) calcd. for C4sH4s0sW: C 65.86, H 5.90, W 22.40; found
C65.63,H5.93, W 22.19.
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Complex 1le.* A 50 mL Schlenk flask was equipped with a magnetic stir bar and flame dried under
vacuum. The flask was filled with argon and charged with ligand 3e (329 mg, 0.304 mmol), which was
azeotropically dried with benzene (3 x 5 mL) to remove residual water. Toluene (23 mL) was added and
the resulting mixture vigorously stirred for 10 min to obtain a clear solution. A solution of
ArC=Mo(0tBu); (Ar = p-MeOCsH4-, 4b) (132 mg, 0.304 mmol) in toluene (5 mL) was added dropwise
and stirring was continued for 1 h. The solvent was removed in vacuo to give a yellow powder (299 mg,
76%) consisting of a mixture of monomer 1e and oligomer [1e],, which was used in the next step.

A 10 mL Schlenk flask was equipped with a magnetic stir bar and

flame dried under vacuum. The flask was filled with argon and

/Q charged with the crude mixture of [1e],/1e (60.0 mg, 46.4 umol)

”Io and [Ds]-toluene (1 mL). The resulting yellow suspension was

3' °’M° /©/ vigorously stirred at 60°C for 1 h to give an orange solution

O Q containing only monomeric complex 1e which analyzed as follows:

O\ 'H NMR (400 MHz, [Ds]-toluene): § = 7.85 (dd, J = 6.9, 1.9 Hz, 3H),

7.81—7.73 (m, 9H), 7.36 (s, 3H), 7.15 (dd, J = 7.1, 1.8 Hz, 3H), 7.13

—7.08 (m, 3H), 6.97 - 6.93 (m, 3H), 6.73 —6.58 (m, 12H), 6.28 — 6.23 (m, 3H), 6.20 — 6.10 (m, 3H), 3.31

(s, 18H), 3.06 (s, 3H). 3*C NMR (101 MHz, [Ds]-toluene): & = 309.3, 161.0, 158.5, 149.3, 143.6, 140.7,

136.2, 136.1, 130.2, 130.0, 129.4, 129.1, 128.9, 125.6, 113.6, 112.0, 53.9, 53.9. °Si NMR (79 MHz,

CsDs): 6 = -9.1. ®>Mo NMR (26 MHz, 60°C, [Dg]-toluene): & = 414.3. IR (film): / 2834, 1592, 1563, 1501,

1461, 1439, 1409, 1397, 1277, 1244, 1179, 1113, 1063, 1030, 994, 868, 820, 796, 759, 731, 692, 647,

622, 530, 502, 464, 426, 408 cm™. HRMS-APPI (m/z): calculated for C7sHssM0O10Sis* [M+H]",

1294.28559; found, 1294.28623. Elemental analysis (%) calculated for C74HesM00O10Sis: C 68.71, H 4.99,
Mo 7.42, Si 6.51; found: C68.37, H5.12, Mo 7.33, Si 6.41.

Table S3. Measured (DOSY) and predicted diffusion coefficients (D) of molybdenum alkylidyne
complexes.

Complex MW (g-mol™) Dpredicted [Mm*s™'] Dexp. [m?s71] A
le 1293.48 5.20-10%°+1.5.10°% 4.758-101° -8.47%
[1e], 2586.97 3.86:10%°+1.1.10°%° 2.959-101° -23.36%
[1e]s 3880.45 3.27-10%°+1.1.10% 2.959-101° -9.42%
[1e]s 5173.92 2.91-10°+ 1.1-10% 2.959-10°1° -1.73%

As can be seen from Table S3, the best match between the recorded and the predicted data is reached
for a supramolecular tetramer; it cannot be excluded, however, that the recorded data average over
different aggregation states present in solution

The HRMS (ESI) spectra recorded from solutions of the complex in either THF, MeCN or toluene show
only the monomeric unit; this result is taken as an additional indication that the complex [1e], is a
supramolecular aggregate rather than a covalently linked entity.
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Figure S15. High resolution mass spectrometry ESI spectra of a solution of [1e], in THF; the spectra
correspond to the monomeric unit 1e

Addition of pyridine (1-4 equiv.) to a solution of [1e]; in [Dg]-toluene afforded the expected adduct
[1e-pyridine], which, however, could not be isolated in pure form. The spectra show a strong
temperature-dependence and 2D EASY-ROESY shows that free and coordinated pyridine do exchange
with each other even at low temperatures. The spectra of the adduct recorded at —40°C are sufficiently
well resolved to allow for full assignment of all signals and hence confident assignment of the structure.
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Table S4. NMR assignment of [1le-pyridine] at -40°C in [Dg]-toluene. The sample was prepared by
mixing 1 eq of the complex with 4 eq of pyridine. Arbitrary numbering scheme as shown in the Insert

200—= 201

202

Atom | & (ppm) |cosY [HsQc [ HvMBC | NOESY [Atom| &(ppm) | cosy |Hsqc| HmBC NOESY | Atom | &(ppm) |cosy [HsQc| HwvBC NOESY
1C| 304.141 3 16 C 137.33 16 16 30C| 126.064 30 28
2c| 138627 4 H 8.024 17 16 |16, 18, 100 17 Hf 7283 [29,31] 30 28, 32 31
3c| 131.846 3 3 17¢C 113.292 17 17 31c| 135.983 31 29
Hl 6665 4 3 1,3,5 H 6.663| 16 17 | 15,17,18 | 16,19 Hl 8054 30 a1 |27 fg'le’z' 25, 30
ac| 112.426 4 4 18C 160.75 16,17, 19 32c| 139.69 28, 30, 31
H[ 6335 3 4 2,4,5 6 19C 54.118 19 33c| 130579 35
5c| 158.754 3,4,6 H3 3.277 19 18 17 3ac| 13746 34 34
6C| 54.288 6 20c| 130579 22 Hl 8047 35 34 |3 f(‘?l%' 35
H3| 3.156 6 5 4 21C 137.173 21 35C| 113371 35 34,35
7c| 127.43 7 25 H 6.866| 22 21 Hl 6.465 34 35 | 33,3536 | 34,37
H  7.909| 25 7 9,25 10 22¢C 113.069 22 22 36C| 160.607 34, 35,37
8C H 6.379| 21 22 | 20,22, 23 24 37c| 54.005 37
ac| 149.758 7,11, 25 23c| 160331 22,24 H3| 371 37 36 35
10c| 131.208 10 12 24C 54.139 24 100 Si| -17.024 16
Hf 7319 12 10 7,25 H3 3.209 24 23 22 101 Si| -14.833 31,34
11c| 120.42 11 25c| 130553 25 7,25 200c| 151.77 202
H[ 7192 10 11 9,13 H 7596 7 25 7,9,25 [10,28 31 H 8134
12c| 12583 12 26C 146.57 28 201c| 12369 201
H  7.008[12, 13 12 | 10,14 13 27¢C 149.999 29,31 Hl s.868 202 | 201
13c| 137.63 13 11 28C 128.47 28 30 202c| 136.67 202
Hf 7799 12 13 12 H 7.155| 29 28 | 26, 30,32 25 Hl 6.407 201 | 202 200
14c| 1376 12 29C 129.183 29 31
15c| 130.38 17 H 7.224| 28,30 | 29 27,31
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Figure S16. *H NMR spectra at different temperatures from 25°C to —40°C. The broadening of the
signals at higher temperatures is caused by exchange between the adduct [le-pyridine] and free

pyridine.
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Figure S21. 2D EASY-ROESY spectrum of [1e-pyridine] at —40°C in [Dg]-toluene. Blue cross peaks give
distance information (due to ROE) and the red EXSY cross peaks give information about chemical
exchange of different species.

Complex 10. A 10 mL Schlenk flask was equipped with a magnetic stir bar and flame dried under
vacuum. The flask was filled with argon
and charged with [1e], (36.0 mg, 27.8
pmol) and pyridine (3 mL) to give a purple
solution. The mixture was vigorously
stirred for 1 h at ambient temperature
before the solvent was removed in vacuo
to give the title complex as a purple solid
(quant.).’H NMR (400 MHz, [Ds]-toluene):
6 = broad and fairly featureless signals,
see the attached copy. IR (film): ¥ 1591,
1562, 1500, 1438,1243,1275,1179, 1107,
1030, 987, 886, 822, 796, 757, 719, 689,
649, 625, 500, 532, 460 cm™. HRMS-ESI (m/z): calculated for CaosH258M04040Sis2" [M—4-(CsHsN)]*,
2589.57955; found, 2589.58989. Elemental analysis (%) calculated for C316H276M04N4040Si12: C 69.13,
H 5.07, N 1.02, Mo 6.99, Si 6.14; found: C 68.71, H 4.92, N 0.98, Mo 6.91, Si 6.01.

Purple/violet crystals suitable for single-crystal X-ray diffraction were grown from a solution of [1e],
(18.0 mg, 13.9 umol) in pyridine (2.5 mL) at ambient temperatures that was layered with n-pentane).
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Figure S22. High resolution mass spectra (ESI) of the tetrameric adduct 10 (Ca96H25sM0404Si12); the data
correspond to the di-cationic species (2589 = [5493 - 4:(py) + 2:H]*) and hence represent the
tetrameric structure 10 upon loss of the four molecules of pyridine coordinated to the four
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'H NMR of Silane S1, 400 MHz, CDCls, 252C
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'H NMR of Ligand 3f, 400 MHz, CDCls, 25°C
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2Si NMR of Ligand 3f, 119 MHz, CDCls, 25°C
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'H NMR of Silane S2, 500 MHz, CDCls, 25 °C
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2Si NMR of Silane S2, 99 MHz, CDCls, 25°C
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'H NMR of Ligand 3g, 500 MHz, CDCls, 25°C
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2Si NMR of Ligand 3g, 99 MHz, CDCls, 25°C
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'H NMR of Silane S3, 600 MHz, CDCls, 252C
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296i NMR of Silane S3, 119 MHz, CDCls, 252C
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1H NMR of Ligand 3h, 600 MHz, CDCls, 252C
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'H NMR of Silane S4, 500 MHz, CDCls, 25°C
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2Si NMR of Silane S4, 99 MHz, CDCls, 25°C
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'H NMR of Ligand 3i, 600 MHz, CDCls, 25°C
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2Si NMR of Ligand 3i, 119 MHz, CDCls, 25°C
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'H NMR of Complex 1f, [Ds]-toluene, 25°C
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296§ NMR of Complex 1f, [Ds]-toluene, 25°C
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'H NMR of Complex 1g, 600 MHz, [Ds]-toluene, 25°C
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296§ NMR of Complex 1g, 119 MHz, [Dg]-toluene, 25°C
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'H NMR of Complex 1h, 600 MHz, [Dg]-toluene, 25°C
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296§ NMR of Complex 1h, 119 MHz, [Ds]-toluene, 25°C
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'H NMR of Complex 1i, 600 MHz, [Dg]-toluene, 25°C
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296§ NMR of Complex 1i, 119 MHz, [Ds]-toluene, 25°C
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'H NMR spectrum (600 MHz, [Ds]-toluene) of the dinuclear complex 8
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13C NMR spectrum (151 MHz, [Ds]-toluene) of the dinuclear complex 8
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29Si NMR spectrum (119 MHz, [Ds]-toluene) of the dinuclear complex 8
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%Mo NMR spectrum (25 MHz, [Ds]-toluene) of the dinuclear complex 8 at 25°C (top) and 60°C (bottom)
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IH NMR spectrum ([Dg]-toluene) of the monomeric complex 1le
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13C NMR spectrum ([Ds]-toluene) of the monomeric complex 1e
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29Si NMR spectrum ([Dg]-toluene) of the monomeric complex 1e
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%Mo NMR spectrum ([Ds]-toluene, 60°C) of the monomeric complex 1e
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IH NMR spectrum ([Dg]-toluene, 25°C) of the tetrameric pyridine adduct 10
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IH NMR spectrum (25°C) of complex [1e], dissolved in neat [Ds]-pyridine (tetrameric pyridine adduct 10)
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'H NMR of complex 6 recorded at 0.005 mm concentration (600 MHz, [Ds]-toluene, 252C)
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Dilution experiment (0.025 mm, 0.01 mm, 0.005 mm), revealing the concentration-dependent aggregation of the tungsten alkylidynes 6 and 12
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'H NMR of complexes 6 and 12 recorded at 0.025 mMm concentration (600 MHz, [Ds]-toluene); insert: diastereotopic benzylic protons
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13C NMR of complex 6 recorded at 0.005 mm concentration (600 MHz, [Ds]-toluene, 252C)
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Excerpt of the 3C NMR spectrum recorded at 0.025 mMm concentration ([Ds]-toluene), showing the presence of the two distinct tungsten alkylidyne species 6 and
12
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183\W NMR projection created from a 2D-HMBC experiment recorded at 0.005 mMm concentration (17 MHz, [Ds]-toluene, 25°C), showing the resonance of
complex 6
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1H,83W-HMBC spectrum ([Dg]-toluene) recorded at 0.025 mm concentration, confirming the presence of two distinct alkylidyne species 6 and 12
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