1,328 research outputs found
EVALUATING THE HEDGING POTENTIAL OF THE LEAN HOG FUTURES CONTRACT
The lean hog futures contract is replacing the live hog futures contract at the Chicago Mercantile Exchange beginning with the February 1997 contract. The lean hog futures will be cash settled based on a broad-based lean hog price index, eliminating terminal markets from the price discovery process. Using this index over a twenty-month period as a proxy for the lean hog futures price, this paper compares the hedging effectiveness of the live hog futures contract to the hedging potential of the lean hog futures contract for cash live hogs as well as four cash meat cuts. Frozen pork bellies futures are also examined for the cash meats. Both long-term and short-term hedges are simulated, using the minimum-variance approach, which utilizes only unconditional information, and the Myers-Thompson approach that incorporates conditional information. The results show that the lean hog futures should perform better than either the live hog or the frozen pork bellies futures as a hedging instrument for Omaha cash hogs and cash loins. The strongest evidence of this is for the short-term hedging of cash hogs. For the other three meats, no futures contract demonstrated a clear hedging advantage.Marketing,
DAC-Less amplifier-less generation and transmission of QAM signals using sub-volt silicon-organic hybrid modulators
We demonstrate generation and transmission of optical signals by directly interfacing highly efficient silicon-organic hybrid (SOH) modulators to binary output ports of a field-programmable gate array. Using an SOH Mach-Zehnder modulator (MZM) and an SOH IQ modulator we generate ON-OFF- keying and binary phase-shift keying signals as well as quadrature phase-shift keying and 16-state quadrature amplitude modulation (16QAM) formats. Peak-to-peak voltages amount to only 0.27 V-pp for driving the MZM and 0.41 V-pp for the IQ modulator. Neither digital-to-analog converters nor drive amplifiers are required, and the RF energy consumption in the modulator amounts to record-low 18 fJ/bit for 16QAM signaling
Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays
We demonstrate the first chip-to-chip interconnect utilizing a densely integrated plasmonic Mach-Zehnder modulator array operating at 3 x 10 Gbit/s. A multicore fiber provides a compact optical interface, while the receiver consists of germanium photodetectors
Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration
Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials
Silicon-organic hybrid electro-optical devices
Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices
High-speed silicon-organic hybrid (SOH) modulator with 1,6 fJ/bit and 180 pm/V in-device nonlinearity
40 Gbit/s silicon-organic hybrid (SOH) phase modulator
A 40 Gbit/s electro-optic modulator is demonstrated. The modulator is based on a slotted silicon waveguide filled with an organic material. The silicon organic hybrid (SOH) approach allows combining highly nonlinear electro-optic organic materials with CMOS-compatible silicon photonics technology
Optical interconnect solution with plasmonic modulator and Ge photodetector array
We report on an optical chip-to-chip interconnect solution, thereby demonstrating plasmonics as a solution for ultra-dense, high-speed short-reach communications. The interconnect comprises a densely integrated plasmonic Mach-Zehnder modulator array that is packaged with standard driving electronics. On the receiver side, a germanium photodetector array is integrated with trans-impedance amplifiers. A multicore fiber provides a compact optical interface to the array. We demonstrate 4 × 20 Gb/s on-off keying signaling with direct detection.ISSN:1041-1135ISSN:1941-017
- …
