65 research outputs found

    A mini-module with built-in spacers for high-throughput ultrafiltration

    Full text link
    Ultrafiltration membrane modules suffer from a permeate flow decrease arising during filtration and caused by concentration polarization and fouling in, e.g., fermentation broth purification. Such performance losses are frequently mitigated by manipulating the hydrodynamic conditions at the membrane-fluid interface using, e.g., mesh spacers acting as static mixers. This additional element increases manufacturing complexity while improving mass transport in general, yet accepting their known disadvantages such as less transport in dead zones. However, the shape of such spacers is limited to the design of commercially available spacer geometries. Here, we present a methodology to design an industrially relevant mini-module with an optimized built-in 3D spacer structure in a flat-sheet ultrafiltration membrane module to eliminate the spacer as a separate part. Therefore, the built-in structures have been conceptually implemented through an in-silico design in compliance with the specifications for an injection molding process. Ten built-in structures were investigated in a digital twin of the mini-module by 3D-CFD simulations to select two options, which were then compared to the empty feed channel regarding mass transfer. Subsequently, the simulated flux increase was experimentally verified during bovine serum albumin (BSA) filtration. The new built-in sinusoidal corrugation outperforms conventional mesh spacer inlays by up to 30% higher permeation rates. The origin of these improvements is correlated to the flow characteristics inside the mini-module as visualized online and in-situ by low-field and high-field magnetic resonance imaging velocimetry (flow-MRI) during pure water permeation

    Coherent terabit communications with microresonator Kerr frequency combs

    Full text link
    Optical frequency combs enable coherent data transmission on hundreds of wavelength channels and have the potential to revolutionize terabit communications. Generation of Kerr combs in nonlinear integrated microcavities represents a particularly promising option enabling line spacings of tens of GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr combs may exhibit strong phase noise and multiplet spectral lines, and this has made high-speed data transmission impossible up to now. Recent work has shown that systematic adjustment of pump conditions enables low phase-noise Kerr combs with singlet spectral lines. Here we demonstrate that Kerr combs are suited for coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the optical source. In a first experiment, we encode a data stream of 392 Gbit/s on subsequent lines of a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment shows feedback-stabilization of a Kerr comb and transmission of a 1.44 Tbit/s data stream over a distance of up to 300 km. The results demonstrate that Kerr combs can meet the highly demanding requirements of multi-terabit/s coherent communications and thus offer a solution towards chip-scale terabit/s transceivers

    High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material

    Get PDF
    We report on the hybrid integration of silicon-on-insulator slot waveguides with organic electro-optic materials. We investigate and compare a polymer composite, a dendron-based material, and a binary-chromophore organic glass (BCOG). A record-high in-device electro-optic coefficient of 230 pm/V is found for the BCOG approach resulting in silicon-organic hybrid Mach-Zehnder modulators that feature low UpL-products of down to 0.52 Vmm and support data rates of up to 40 Gbit/

    Single-laser 32.5 Tbit/s Nyquist WDM transmission

    Full text link
    We demonstrate 32.5 Tbit/s 16QAM Nyquist WDM transmission over a total length of 227 km of SMF-28 without optical dispersion compensation. A number of 325 optical carriers are derived from a single laser and encoded with dual-polarization 16QAM data using sinc-shaped Nyquist pulses. As we use no guard bands, the carriers have a spacing of 12.5 GHz equal to the Nyquist bandwidth of the data. We achieve a high net spectral efficiency of 6.4 bit/s/Hz using a software-defined transmitter which generates the electrical modulator drive signals in real-time.Comment: (c) 2012 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibite

    40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator

    Get PDF
    We demonstrate for the first time generation of 16-state quadrature amplitude modulation (16QAM) signals at a symbol rate of 40 GBd using silicon-based modulators. Our devices exploit silicon-organic hybrid (SOH) integration, which combines silicon-on-insulator slot waveguides with electro-optic cladding materials to realize highly efficient phase shifters. The devices enable 16QAM signaling and quadrature phase shift keying (QPSK) at symbol rates of 40 GBd and 45 GBd, respectively, leading to line rates of up to 160 Gbit/s on a single wavelength and in a single polarization. This is the highest value demonstrated by a silicon-based device up to now. The energy consumption for 16QAM signaling amounts to less than 120 fJ/bit – one order of magnitude below that of conventional silicon photonic 16QAM modulators

    Silicon-organic hybrid (SOH) integration and photonic multi-chip systems: Technologies for high-speed optical interconnects

    Get PDF
    Limitations of silicon photonics can be overcome by hybrid integration of silicon photonic or plasmonic circuits with organic materials or by photonic multi-chip systems. We give an overview on our recent progress regarding both silicon-organic hybrid (SOH) integration and multi-chip integration enabled by photonic wire bonding
    • …
    corecore