15,933 research outputs found

    Viability of competing field theories for the driven lattice gas

    Full text link
    It has recently been suggested that the driven lattice gas should be described by a novel field theory in the limit of infinite drive. We review the original and the new field theory, invoking several well-documented key features of the microscopics. Since the new field theory fails to reproduce these characteristics, we argue that it cannot serve as a viable description of the driven lattice gas. Recent results, for the critical exponents associated with this theory, are re-analyzed and shown to be incorrect.Comment: 4 pages, revtex, no figure

    Lateral transport of thermal capillary waves

    Full text link
    We demonstrate that collective motion of interfacial fluctuations can occur at the interface between two coexisting thermodynamic phases. Based on computer simulation results for driven diffusive Ising and Blume-Capel models, we conjecture that the thermal capillary waves at a planar interface travel along the interface if the lateral order parameter current j_op(y) is an odd function of the distance y from the interface and hence possesses opposite directions in the two phases. Such motion does not occur if j_op(y) is an even function of y. A discrete Gaussian interface model with effective dynamics exhibits similiar transport phenomena but with a simpler dispersion relation. These findings open up avenues for controlled interfacial transport on the nanoscale.Comment: 4 pages, 6 figure

    Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes

    Get PDF
    The dynamics of relativistic stars and black holes are often studied in terms of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with different effective potentials V(x)V(x). In this paper we present a systematic study of the relation between the structure of the QNM's of the KG equation and the form of V(x)V(x). In particular, we determine the requirements on V(x)V(x) in order for the QNM's to form complete sets, and discuss in what sense they form complete sets. Among other implications, this study opens up the possibility of using QNM expansions to analyse the behavior of waves in relativistic systems, even for systems whose QNM's do {\it not} form a complete set. For such systems, we show that a complete set of QNM's can often be obtained by introducing an infinitesimal change in the effective potential

    Lifetime and polarization of the radiative decay of excitons, biexcitons and trions in CdSe nanocrystal quantum dots

    Get PDF
    Using the pseudopotential configuration-interaction method, we calculate the intrinsic lifetime and polarization of the radiative decay of single excitons (X), positive and negative trions (X+ and X−), and biexcitons (XX) in CdSe nanocrystal quantum dots. We investigate the effects of the inclusion of increasingly more complex many-body treatments, starting from the single-particle approach and culminating with the configuration-interaction scheme. Our configuration-interaction results for the size dependence of the single-exciton radiative lifetime at room temperature are in excellent agreement with recent experimental data. We also find the following. (i) Whereas the polarization of the bright exciton emission is always perpendicular to the hexagonal c axis, the polarization of the dark exciton switches from perpendicular to parallel to the hexagonal c axis in large dots, in agreement with experiment. (ii) The ratio of the radiative lifetimes of mono- and biexcitons (X):(XX) is ~1:1 in large dots (R=19.2 Å). This ratio increases with decreasing nanocrystal size, approaching 2 in small dots (R=10.3 Å). (iii) The calculated ratio (X+):(X−) between positive and negative trion lifetimes is close to 2 for all dot sizes considered

    Radiometric calibration and processing procedure for reflective bands on LANDSAT-4 protoflight Thematic Mapper

    Get PDF
    The radiometric subsystem of NASA's LANDSAT-4 Thematic Mapper (TM) sensor is described. Special emphasis is placed on the internal calibrator (IC) pulse shapes and timing cycle. The procedures for the absolute radiometric calibration of the TM channels with a 122-centimeter integrating sphere and the transfer of radiometric calibration from the channels to the IC are reviewed. The use of the IC to calibrate TM data in the ground processing system consists of pulse integration, pulse averaging, IC state identification, linear regression analysis, and histogram equalization. An overview of the SCROUNGE-era (before August 1983) method is presented. Procedural differences between SCROUNGE and the TIPS-era (after July 1983) and the implications of these differences are discussed

    Heuristic derivation of continuum kinetic equations from microscopic dynamics

    Full text link
    We present an approximate and heuristic scheme for the derivation of continuum kinetic equations from microscopic dynamics for stochastic, interacting systems. The method consists of a mean-field type, decoupled approximation of the master equation followed by the `naive' continuum limit. The Ising model and driven diffusive systems are used as illustrations. The equations derived are in agreement with other approaches, and consequences of the microscopic dependences of coarse-grained parameters compare favorably with exact or high-temperature expansions. The method is valuable when more systematic and rigorous approaches fail, and when microscopic inputs in the continuum theory are desirable.Comment: 7 pages, RevTeX, two-column, 4 PS figures include

    Characterization of radiometric calibration of LANDSAT-4 TM reflective bands

    Get PDF
    Prelaunch and postlaunch internal calibrator, image, and background data is to characterize the radiometric performance of the LANDSAT-4 TM and to recommend improved procedures for radiometric calibration. All but two channels (band 2, channel 4; band 5, channel 3) behave normally. Gain changes relative to a postlaunch reference for channels within a band vary within 0.5 percent as a group. Instrument gain for channels in the cold focal plane oscillates. Noise in background and image data ranges from 0.5 to 1.7 counts. Average differences in forward and reverse image data indicate a need for separate calibration processing of forward and reverse scans. Precision is improved by increasing the pulse integration width from 31 to 41 minor frames, depending on the band

    Is the particle current a relevant feature in driven lattice gases?

    Full text link
    By performing extensive MonteCarlo simulations we show that the infinitely fast driven lattice gas (IDLG) shares its critical properties with the randomly driven lattice gas (RDLG). All the measured exponents, scaling functions and amplitudes are the same in both cases. This strongly supports the idea that the main relevant non-equilibrium effect in driven lattice gases is the anisotropy (present in both IDLG and RDLG) and not the particle current (present only in the IDLG). This result, at odds with the predictions from the standard theory for the IDLG, supports a recently proposed alternative theory. The case of finite driving fields is also briefly discussed.Comment: 4 pages. Slightly improved version. Journal Reference: To appear in Phys. Rev. Let
    • 

    corecore