14,823 research outputs found

    On vanishing sums of m\,m\,th roots of unity in finite fields

    Get PDF
    In an earlier work, the authors have determined all possible weights nn for which there exists a vanishing sum ζ1++ζn=0\zeta_1+\cdots +\zeta_n=0 of mmth roots of unity ζi\zeta_i in characteristic 0. In this paper, the same problem is studied in finite fields of characteristic pp. For given mm and pp, results are obtained on integers n0n_0 such that all integers nn0n\geq n_0 are in the ``weight set'' Wp(m)W_p(m). The main result (1.3)(1.3) in this paper guarantees, under suitable conditions, the existence of solutions of x1d++xnd=0x_1^d+\cdots+x_n^d=0 with all coordinates not equal to zero over a finite field

    Comment on ``Dynamic behavior of anisotropic non-equilibrium driving lattice gases''

    Full text link
    In a recent Letter Albano and Saracco study the dynamic critical behavior of some anisotropic driven lattice gases by Monte Carlo (MC) simulations. In this Comment we point out that the Ans\"atze they use to relate the measured scaling exponents with the critical exponents analytically computed within different field-theoretical approaches do not take properly into account the strongly anisotropic nature of the phase transition, by implicitly assuming z=z=zz = z_{\bot} = z_{\parallel}. As a consequence, at variance with the claims by the authors, their MC data are not conclusive to determine which one of the field theories proposed in the literature correctly describes the universal properties of the phase transition in these lattice gases.Comment: 1 pag

    Novel Phases and Finite-Size Scaling in Two-Species Asymmetric Diffusive Processes

    Full text link
    We study a stochastic lattice gas of particles undergoing asymmetric diffusion in two dimensions. Transitions between a low-density uniform phase and high-density non-uniform phases characterized by localized or extended structure are found. We develop a mean-field theory which relates coarse-grained parameters to microscopic ones. Detailed predictions for finite-size (LL) scaling and density profiles agree excellently with simulations. Unusual large-LL behavior of the transition point parallel to that of self-organized sandpile models is found.Comment: 7 pages, plus 6 figures uuencoded, compressed and appended after source code, LATeX, to be published as a Phys. Rev. Let

    Perturbative Approach to the Quasinormal Modes of Dirty Black Holes

    Get PDF
    Using a recently developed perturbation theory for uasinormal modes (QNM's), we evaluate the shifts in the real and imaginary parts of the QNM frequencies due to a quasi-static perturbation of the black hole spacetime. We show the perturbed QNM spectrum of a black hole can have interesting features using a simple model based on the scalar wave equation.Comment: Published in PR

    Conductance spectra of metallic nanotube bundles

    Get PDF
    We report a first principles analysis of electronic transport characteristics for (n,n) carbon nanotube bundles. When n is not a multiple of 3, inter-tube coupling causes universal conductance suppression near Fermi level regardless of the rotational arrangement of individual tubes. However, when n is a multiple of 3, the bundles exhibit a diversified conductance dependence on the orientation details of the constituent tubes. The total energy of the bundle is also sensitive to the orientation arrangement only when n is a multiple of 3. All the transport properties and band structures can be well understood from the symmetry consideration of whether the rotational symmetry of the individual tubes is commensurate with that of the bundle

    Quasinormal Modes of Dirty Black Holes

    Full text link
    Quasinormal mode (QNM) gravitational radiation from black holes is expected to be observed in a few years. A perturbative formula is derived for the shifts in both the real and the imaginary part of the QNM frequencies away from those of an idealized isolated black hole. The formulation provides a tool for understanding how the astrophysical environment surrounding a black hole, e.g., a massive accretion disk, affects the QNM spectrum of gravitational waves. We show, in a simple model, that the perturbed QNM spectrum can have interesting features.Comment: 4 pages. Published in PR
    corecore