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In an earlier work, the authors determined all possible weights n for which there
exists a vanishing sum z1 1 ? ? ? 1 zn 5 0 of mth roots of unity zi in characteristic
0. In this paper, the same problem is studied in finite fields of characteristic p. For
given m and p, results are obtained on integers n0 such that all integers n $ n0 are
in the ‘‘weight set’’ Wp(m). The main result in this paper guarantees, under suitable
conditions, the existence of solutions of xd

1 1 ? ? ? 1 xd
n 5 0 with all coordinates

not equal to zero over a finite field.  1996 Academic Press, Inc.

1. INTRODUCTION

By vanishing sum of mth roots of unity, we mean an equation ai 1 ? ? ? 1
an5 0, where am

i 5 1 for each i. The integer n is said to be the weight of
this vanishing sum. In [LL], considering mth roots of unity in C, we defined
W(m) to be the set of integers n $ 0 for which there exists a vanishing
sum a1 1 ? ? ? 1 an 5 0 as above. The principal result in [LL] gives
a complete determination of the weight set W(m) (in characteristic 0),
as follows.
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THEOREM 1.1. For any natural number m with prime factorization
pa11 ? ? ? parr , the weight set W(m) is exactly given by Np1 1 ? ? ? 1 Npr .
(Here and in the following, N :5 h0, 1, 2, ? ? ?j.)

In this paper, we study vanishing sums of mth roots of unity in characteris-
tic p. In analogy to the characteristic 0 case, we define Wp(m) to be the set
of weights n for which there exists a vanishing sum a1 1 ? ? ? 1 an 5 0,
where each ai is an mth root of unity in Fp , the algebraic closure of the
prime field Fp . Note that, if m 5 ptm9 where gcd(p, m9) 5 1, we have
xm 5 1 in Fp iff xm9 5 1; in particular, Wp(m) 5 Wp(m9). Therefore, we
may assume throughout that gcd(p, m) 5 1, i.e., p is not among the prime
divisors pi of m. As in the case of characteristic 0, we have pi [ Wp(m) for
all i. But in characteristic p, we also have p [ Wp(m) (due to the vanishing
sum p ? 1 5 0), so now

Wp(m) $ Np 1 Np1 1 ? ? ? 1 Npr . (1.2)

Easy examples (see (2.1)) show that this need not be an equality in
general, so we are left with no viable conjecture on the structure of the
weight set Wp(m) in characteristic p. However, (1.2) does show that, if
m . 1, all sufficiently large integers n (in fact all n $ (p 2 1)(pi 2 1))
belong to Wp(m). A more tractable problem will then be the determination
of more accurate bounds n0 such that all integers n $ n0 belong to Wp(m).

In this paper, we will show how such an integer n0 can be determined.
Our work is divided into three cases, depending whether gcd(p 2 1, m) is
1, 2, or greater. The estimates on n0 differ from case to case and are given
respectively in (5.6), (4.1), and (3.1)–(3.3). Although we have three different
estimates on n0 , there does exist a (necessarily weaker) uniform estimate
for all cases. In the following, we shall try to explain what this uniform
estimate is, and why is it a reasonable one.

A guiding prinicple for our work throughout is the fact that a finite field
is a C1-field (see [Gr]). If K 5 Fpk is a finite field containing all mth roots
of unity, then, for d :5 (pk 2 1)/m, the mth roots of unity in Fp comprise
the group K̇d. Therefore, a vanishing sum of mth roots of unity of weight
n corresponds precisely to a ‘‘good’’ solution of xd

1 1 ? ? ? 1 xd
n 5 0 in K,

where by a ‘‘good’’ solution we mean one with each xi ? 0. If n . d, the
fact that K is C1 implies that we have a solution (x1 , . . . , xn) ? (0, . . . , 0).
It certainly seems tempting to speculate that there exists in fact a ‘‘good’’
solution (in K). If this is indeed the case, then by what we said earlier in
this paragraph, any integer n . d will be in the weight set Wp(m).

The desired conclusion that, for n . d, xd
1 1 ? ? ? 1 xd

n 5 0 has a ‘‘good’’
solution in K is, however, not rue in general! For instance, if d 5 pk 2 1,
then xd 5 1 for each x [ K̇, so we have a ‘‘good’’ solution for xd

1 1 ? ? ? 1
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xd
n 5 0 in K only when n is a multiple of p. In a similar vein, if k 5 1, p is

odd, and d 5 (p 2 1)/2, then any nonzero dth power in K is 61. For any
odd integer n [ (d, p), the equation xd

1 1 ? ? ? 1 xd
n 5 0 again has no

‘‘good’’ solution in Fp . The trouble with these cases is that m # 2, for which
we do not have ‘‘enough’’ mth roots to play with. As it turns out, as soon
as we ignore the above cases, we have the following uniform result for
getting ‘‘good’’ solutions.

THEOREM 1.3. Let K 5 Fpk and d 5 (pk 2 1)/m as above, and assume
that m ? 1, (m, k) ? (2, 1). Then, whenever n . d, the equation xd

1 1 ? ? ?
1 xd

n 5 0 has a ‘‘good’’ solution in K. In other words, the weight set Wp(m)
contains all integers $d 1 1.

The results in Sections 3–5 will cover this theorem in the case m $ 3.
In the case m 5 2, (1.3) is quickly checked as follows. Since we assume in
this case that k $ 2, we have d $ (p2 2 1)/2 $ p 2 1. Given n $ d 1
1 $ p, it is easy to solve the equation a1 1 ? ? ? 1 an 5 0 with ai 5 61,
by considering the parity of n. Having disposed of the trivial cases m 5 1,
2, we may assume in Sections 3–6 of this paper that m $ 3.

In the case when p is odd and d 5 2, (1.3) says precisely that, for any
n . 2, the quadratic form x2

1 1 ? ? ? 1 x2
n has a ‘‘good’’ zero over any

finite field of more than five elements. This is a special case of a well-known
observation of Witt for isotropic diagonal quadratic forms (see [Wi, p. 39;
BS, p. 394; La, p. 25, Ex. 7]). Thus, (1.3) may be thought of as a generalization
of Witt’s result to the higher degree diagonal forms xd

1 1 ? ? ? 1 xd
n over

finite fields. Note that du(pk 2 1) is not a really essential assumption in
(1.3). In dealing with the equation xe

1 1 ? ? ? 1 xe
n 5 0, we can replace the

degree e by d :5 gcd(pk 2 1, e) and define m to be (pk 2 1)/d. Then
K̇e 5 K̇d, so under the assumptions of (1.3), xe

1 1 ? ? ? 1 xe
n 5 0 will have

a ‘‘good’’ solution as long as n . d.
In the literature, there are many results dealing with diagonal equations

over finite fields; see, for instance, [LN, Sch, Sm] and more recently [QY].
Conventionally, one could apply algebro-geometric methods or alterna-
tively the method of Gauss and Jacobi sums. As the referee of this paper
pointed out, these methods can be utilized to show the existence of ‘‘good’’
solutions to a diagonal equation xd

1 1 ? ? ? 1 xd
n 5 0 (n . 2) in Fq if q is

suitably large compared to d (without the condition n . d). However, these
conventional methods do not seem to give enough information if q is
‘‘small’’ in comparison to d. In our setting, working mostly with n . d
and taking full advantage of the additive nature of the special equation
xd

1 1 ? ? ? 1 xd
n 5 0, we apply instead the methods of additive number

theory. These methods do give fairly precise results, without reference to
the size of Fq . In fact, the analysis in Sections 3–5 will not only prove (1.3),
but also show that, in various cases, the equations xd

1 1 ? ? ? 1 xd
n 5 0 has
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a ‘‘good’’ solution in K often for much smaller values of n (than n .
d 1 1). Thus, the more precise results in this paper are to be found
in (3.1)–(3.3), (4.1), and (5.6). Theorem 1.3 is only a common denominator
of these results giving a convenient and uniform summary of the main
work in this paper.

2. SOME BASIC EXAMPLES

We shall begin with some examples and computations of the weight sets
Wp(m). The first couple of examples show that various properties of weight
sets in characteristic 0 are no longer valid in characteristic p. For conve-
nience of expressing weight sets, let us use the notation [n, y)Z for the set
of integers $n.

EXAMPLE 2.1. Referring to (1.2), the smallest positive element in the set
Wp(m) may not be minhp, p1 , . . . , prj. For instance, when p 5 11 and
m 5 5, the 5th roots of unity in F11 are h1, 3, 9, 5, 4j. Observing that
1 1 1 1 9 5 0 in F11 , we see that W11(5) contains 3, which is smaller than
5 and 11. By (2.3) below, we have W11(5) 5 h0j < [3, y)Z . Thus, not only
does (1.2) fail to be an equality, but also W11(5) is not even of the form
oi Nqi for a set of primes qi’s.

EXAMPLE 2.2. Contrary to the characteristic 0 case, the set Wp(m) may
be larger than Wp(m0), where m0 is the square-free part of m. For instance,
let p 5 5 and m 5 4, so m0 5 2. It is easy to see that W5(2) 5 h0, 2j <
[4, y)Z , but W5(4) 5 h0j < [2, y)Z .

EXAMPLE 2.3. Let q 5 pa . 5, where p is an odd prime, and let m 5
(q 2 1)/2. Then d :5 (q 2 1)/m 5 2. For any n $ 3, the quadratic form
X2

1 1 ? ? ? 1 X2
n is isotropic over Fq , so by the theorem of Witt referenced

before, it has a ‘‘good’’ zero in Fq . Therefore, n [ Wp(m). It follows that
Wp(m) 5 h0j < [2, y)Z if q ; 1 (mod 4), and Wp(m) 5 h0j < [3, y)Z if
q ; 3 (mod 4).

EXAMPLE 2.4. (Fp contains all mth roots of unity.) Let p 5 31, and
m 5 3. The third roots of unity are h1, 5, 25j, so the equation 25 1 6 ? 1 5
0 [ F31 shows that 7 [ W31(3). A routine computation shows that
W31(3) 5 h0, 3, 6, 7j < [9, y)Z .

EXAMPLE 2.5. (Fp contains no mth roots of unity other than 1.) Let
p 5 2, and m 5 73. We work in K 5 F29 , which contains all 73rd roots of
unity. By standard tables of irreducible polynomials over finite fields, the
trinomial f(X) 5 X9 1 X 1 1 is irreducible over F2 , so we can take K to
be F2[X]/( f(X)). Let a :5 X [ K. We have 0 5 (a9 1 a 1 1)8 5 a72 1
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a8 1 1, so a73 5 a(a8 1 1) 5 a9 1 a 5 1. Thus, the relation a9 1
a 1 1 5 0 shows that 3 [ W2(73), and it follows easily that W2(73) 5 h0j <
[2, y)Z .

In the balance of this section, let us consider Wp(m) in the case when m
is a prime power (not divisible by p). Under a special hypothesis on the
cyclotomic polynomial Fm(X), the weight set Wp(m) can be determined ex-
plicitly.

THEOREM 2.6. Let m 5 la, where l is a prime different from p, and
assume that the cyclotomic polynomial Fm(X) [ Z[X] remains irreducible
modulo p. Then Wp(m) 5 Np 1 Nl.

Proof. Of course, it suffices to prove the inclusion ‘‘#’’. Let z be a
primitive mth root of unity in Fp . Let m9 :5 m/l, and a :5 zm9 (a primitive
lth root of unity). Let K 5 Fp(z), and L 5 Fp(a). Since Fm(X) is irre-
ducible mod p, [K : Fp] 5 w(m) 5 m9(l 2 1). From this, it is easy to see
that [K : L] 5 m9 and [L : Fp] 5 l 2 1.

Any vanishing sum of mth roots of unity can be written in the form
om921

i50 giz
i 5 0, where each gi is a sum of lth roots of unity. Since the degree

of z over L is m9, the elements 1, z, . . . , zm921 are linearly independent
over L. Therefore, each gi [ L is itself a vanishing sum, and it suffices to
show that its weight is in Np 1 Nl. Starting over again, we are now down
to considering a vanishing sum ol21

i50 aiai 5 0, where each ai [ N. Let aj be
the smallest among the ai’s. Since the minimal equation of a over Fp is
1 1 a 1 ? ? ? 1 al21 5 0, it follows easily that a0 5 a1 5 ? ? ? 5 al21 [ Fp .
The weight of the vanishing sum in question is oi ai ; laj (mod p). Since
oi ai $ laj , it follows that oi ai 5 laj 1 bp for some b [ N, as desired.

Q.E.D.

Remark 2.7. A vanishing sum of mth roots of unity is said to be minimal
if no proper subsum of it is also vanishing. In general, the problem of
determining the minimal vanishing sums is difficult (both in characteristic
0 and in characteristic p). Under the hypothesis of (2.6), however, this
problem can be solved. In fact, the argument presented in the proof above
can be used to show that, in the setting of (2.6), the minimal vanishing
sums of mth roots of unity are, up to multiplicaton by a power of z:
(1) p ? 1 5 0, and (2) 1 1 a 1 ? ? ? 1 al21 5 0. (Of course, this implies
that Wp(m) 5 Np 1 Nl.) For this conclusion, however, the assumption on
the irreducibility of Fm(X) modulo p is essential, as the examples (2.1),
(2.4) and (2.5) show. (In (2.1) and (2.4), Fm(X) splits completely modulo
p, and in (2.5), Fm(X) splits into the product of eight irreducible factors
of degree 9 in Fp[X].)
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3. THE CASE gcd(p 2 1, m) $ 3

In dealing with Wp(m), our main goal is to find good estimates for integers
n0 such that [n0, y)Z # Wp(m). We begin our analysis with the case when
gcd(p 2 1, m) $ 3. This case turns out to be fairly easy if we use the right
tools from additive number theory modulo p. It will be convenient to use
the following notations. For a subset A in a field, we shall write uAu for the
cardinality of A, and for any integer n $ 1, we write n p A for the set
A 1 ? ? ? 1 A with n summands of A.

THEOREM 3.1. Assume that m0 :5 gcd(p 2 1, m) $ 3 and let d0 5
(p 2 1)/m0 . Then [d0 1 1, y)Z # Wp(m0) # Wp(m).

Proof. Since m0 u (p 2 1), the group H of m0th roots of unity in Fp is
exactly Ḟd0p and has exactly m0 elements. We clain that un p Hu $ nm0 for
n # d0 , and un p Hu 5 p for n $ d0 1 1. It suffices to prove this for n 5
1, 2, . . . , d0 1 1 (for, once we show that u(d0 1 1) p Hu 5 p, then (d0 1
1) p H 5 Fp , and this implies that (d0 1 i) p H 5 Fp for any i $ 1). We
proceed by induction on n, the case n 5 1 being clear. Assume that un p

Hu $ nm0 where n , d0 . By the Cauchy–Davenport Theorem (see [Ma,
Cor. 1.2.3]), u(n 1 1) p Hu is either p (and hence $ (n 1 1)m0), or else

u(n 1 1) p Hu $ un p Hu 1 uHu 2 1 $ (n 1 1)m0 2 1.

In the latter case, u(n 1 1)pH \ h0ju $ (n 1 1)m0 2 2. Since H acts on
(n 1 1)pH \ h0j by multiplication, u(n 1 1)pH \ h0ju is a multiple of m0 .
Since m0 $ 3, we must therefore have u(n 1 1)pH \ h0ju $ (n 1 1)m0 , which
gives what we want. This proves our claim for n # d0 . In particular,
ud0 p Hu $ d0m0 5 p 2 1. By the Cauchy–Davenport Theorem again,
(d0 1 1) p H must be Fp , for otherwise we would have

u(d0 1 1) p Hu $ ud0 p Hu 1 uHu 2 1 $ d0m0 1 m0 2 1 5 p 1 (m0 2 1) . p,

a contradiction. This completes our inductive proof. Thus, for any n $
d0 1 1, we have 0 [ n p H. This means that n [ Wp(m0), and so [d0 1 1,
y)Z # Wp(m0) # Wp(m). Q.E.D.

EXAMPLE 3.2. In many cases Theorem 3.1 gives the best result. For
instance, if p ; 3 (mod 4) and m 5 (p 2 1)/2 $ 3, then d0 5 2 and we
have d0 Ó Wp(m) since m is odd. Even in the case p ; 1 (mod 4), Theorem
3.1 may still give the best result. For instance, if p 5 13 and m 5 4, then
d0 5 3 and G 5 h61, 68j. By a simple calculation, 3 p G 5 Ḟ13, so again
d0 5 3 Ó Wp(m). On the other hand, if m is divisible by two distinct primes
p1 , p2 , then the fact that p1 , p2 [ Wp(m) implies that [n0 , y)Z # Wp(m)
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for n0 :5 (p1 2 1)(p2 2 1) (see [LeV, p. 22, Ex. 4]). In case the number d0

in (3.1) is ‘‘large,’’ [n0, y)Z # Wp(m) will of course give a better result.

We can now derive the first case of Theorem 1.3.

COROLLARY 3.3. Let K 5 Fpk be a finite field containing all mth roots
of unity, and let d 5 (pk 2 1)/m. If m0 :5 gcd(p 2 1, m) $ 3, then
[d 1 1, y)Z # Wp(m0) # Wp(m).

Proof. Say p 2 1 5 m0d0 and m 5 m0m1 . Then

d 5
(p 2 1)(pk21 1 ? ? ? 1 p 1 1)

m
5 do ?

pk21 1 ? ? ? 1 p 1 1
m1

.

Since gcd(d0 , m1) 5 1, the fraction on the right-hand side above is an
integer. Therefore, we have d0ud, and the desired conclusion follows from
Theorem 3.1. Q.E.D.

4. THE CASE gcd(p 2 1, m) 5 2

We shall assume throughout this section that gcd(p 2 1, m) 5 2 (and
as before m $ 3). In particular, p is odd and m is even. In this case, Wp(m)
contains 2N and is stable under addition by 2. Thus, once we have an odd
integer n [ Wp(m), we will have automatically [n 2 1, y)Z # Wp(m). This
observation will be used without further mention in the following.

Let K 5 Fpk be any finite field containing the group G of all mth roots
of unity. The followiing result gives a somewhat sharper form of Theorem
1.3 in the case gcd(p 2 1, m) 5 2 (in that the index [K̇ : G] itself is shown
to be a weight, with a minor exception).

THEOREM 4.1. Assume that gcd(p 2 1, m) 5 2, and let d 5 [K̇ : G] 5
(pk 2 1)/m. Then [d, y)Z # Wp(m) unless p 5 3 and m 5 3k 2 1, in which
case [d 1 1, y)Z # W3(m).

Proof. Let us first check Theorem 4.1 when m 5 4. In this case, the
assumption gcd(p 2 1, m) 5 2 implies that G is not contained in Fp , so
k $ 2. If p . 3, then d $ (p2 2 1)/4 $ p, and we have [d, y)Z # [p, y)Z #
Wp(m). If p 5 3, then d $ (9 2 1)/4 5 2, and we have again [d, y)Z #
[2, y)Z # W3(m) (since W3(m) contains both 2 and 3). In the following, we
may therefore assume that m $ 6.

Write m 5 2m9, so that

d 5
(p 2 1)(pk21 1 ? ? ? 1 p 1 1)

2m9
5

p 2 1
2

?
pk21 1 ? ? ? 1 p 1 1

m9
. (4.2)
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Since gcd(m9, (p 2 1)/2) 5 1, we have m9u(pk21 1 ? ? ? 1 p 1 1). If m9 ,
pk21 1 ? ? ? 1 p 1 1, the second factor on the right-hand side in (4.2) is
$2, so d $ p 2 1. Since p [ Wp (m), we have [d, y)Z # [p 2 1, y)Z #
Wp (m), as desired. Therefore, in the following we may assume that

m9 5 pk21 1 ? ? ? 1 p 1 1, and d 5 (p 2 1)/2. (4.3)

In this case K̇ 5 Ḟp21 ? G, so any coset of G in K̇ has a ‘‘scalar’’ representative.
We fix a generator z for the group G, and try to put a lower bound on the
cardinality of the set A :5 Fp > 2 p G.

Recalling that m $ 6, write

(z 2 1)G 5 a1G, (z2 2 1)G 5 a2G, and (z4 2 1)G 5 a3G,

where ai [ Ḟp. Clearly, 6ai [ A, since 21 [ G. First let us assume that
these three G-cosets in K̇ are different. Since ai ? 2aj , h0, 6aij are seven
different elements of A. (In particular, p $ 7 here.) Applying repeatedly
the Cauchy–Davenport Theorem in Fp , we see that un p Au $ min hp, 6n 1
1j. It follows that

n $ (p 2 1)/6 ⇒ n p A 5 Fp ⇒ 21 [ n p A ⇒ 2n 1 1 [ Wp (m).

This yields

2 Lp 2 1
6 J 1 1 [ Wp (m)

(where ? denotes the ceiling function). Writing p in the form 6t 6 1, we
see easily that

2 Lp 2 1
6 J 5 Lp 2 1

3 J.

Thus, in this case, we get the stronger conclusion that [(p 2 1)/3, y)Z #
Wp (m).

From now on, we may assume that the three cosets haiGj above are not
all different. If a1G 5 a2G, then z2 2 1 5 (z 2 1)zi for some i, and so
zi 5 z 1 1. Since m is even, this shows that 3 [ Wp (m), and so [2, y)Z #
Wp (m). We have certainly no problem in this case (except when d 5 1,
which occurs only when p 5 3). If a2G 5 a3G, we can finish similarly. Now
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assume a1G 5 a3G. Here, z4 2 1 5 (z 2 1)zj for some j, so zj 5 z3 1
z2 1 z 1 1. As before, this gives 5 [ Wp (m). If p . 7, then d 5 (p 2 1)/2
$ 5, and we have what we want. Thus we are only left with the cases
p 5 3, 5, 7.

If p 5 3, we have d 5 (p 2 1)/2 5 1 (and m 5 3k 2 1 by (4.3)). In this
case the desired conclusion is [2, y)Z # W3 (m), which is true since
2, 3 [ W3 (m).

If p 5 5, then d 5 2 [ W5 (m). In this case we need to show that 3 [
W5 (m). If a1G 5 a2G, we are done as before. Otherwise, one of these
cosets must be the identity coset G (since [K̇ : G] 5 d 5 2), and this implies
again that 3 [ W5 (m).

Finally, we treat the case p 5 7. Here we must show that [K̇ : G] 5 d 5
3 is in the weight set W7 (m). We first note that

If (z 2 1)G 5 (zi 2 1)G 5 (zi11 2 1)G for some i $ 1, then 3 [ W7 (m).

(4.4)

Indeed, if we write zi 2 1 5 (z 2 1)zr and zi11 2 1 5 (z 2 1)zs, then
zr 5 zi21 1 ? ? ? 1 z 1 1 and zs 5 zi 1 ? ? ? 1 z 1 1 imply that zs 5
zi 1 zr, so 3 [ W7 (m). Now let C, C9 be the two nonidentity cosets of G
in K̇. By reasonings we have used before, we may assume that (z2 2 1)
G 5 C and (z 2 1)G 5 (z4 2 1)G 5 C9. Noting that 3 is prime to m (since
gcd(p 2 1, m) 5 gcd(6, m) 5 2), we may also assume, in view of (4.4),
that (z3 2 1)G 5 C. Replacing z by z3, we may further assume that (z9 2
1)G 5 C9. Next, note that since m $ 6, it cannot divide 10, so z10 ? 1.
Thus, in view of (4.4), we may assume that (z5 2 1)G 5 C, and hence that
(z10 2 1)G 5 C9. Now we have C9 5 (z 2 1)G 5 (z9 2 1)G 5 (z10 2 1)G,
so 3 [ W7 (m) once more by (4.4) Q.E.D.

5. THE CASE gcd(p 2 1, m) 5 1

Throughout this section, we shall assume that gcd(p 2 1, m) 5 1 (and as
before, m $ 3). The analysis of the weight set Wp (m) in this case turns out
to require the hardest work.

The assumption that gcd(p 2 1, m) 5 1 means that the only mth root
of unity in Fp is 1. Therefore, upon factoring the polynomial X m 2 1 modulo
p, we have

X m 2 1 5 (X 2 1)g1(X)g2(X) . . . , (5.1)

where the gi’s are irreducible monic polynomials in Fp[X], each of degree
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$2. Let l :5 minhdeg(gi)j. This integer l will play an important role in
finding the estimates on Wp (m) in this section, so let us first note a few
other characterizations of it.

Recall that the cyclotomic polynomial Fn(X) [ Z[X] factors modulo p
into a product of irreducible factors each of degree given by the order of
the element p in the unit group U(Z/nZ) (see, e.g. [Gu]). Since Xm 2 1
5 Pnum Fn(X), it follows that l is the minimum of the orders of p in
U(Z/nZ) for n ranging over the divisors of m greater than 1. From this,
we see that l is also the minimum of the orders of p in U(Z/qZ) for q
ranging over the prime divisors of m. It is now an easy exercise to check
the following:

l 5 minhe $ 1: gcd(pe 2 1, m) . 1j. (5.2)

This simply means that Fpl is the field with the smallest extension degree
over Fp which contains an mth root of unity other than 1. This can also be
verified directly from the definition of l.

For the rest of this section, let L :5 Fpl , m9 :5 gcd(pl 2 1, m), and let
H be group of m9th roots of unity in L. By (5.2), uHu 5 m9 $ 2. It will be
important to work with the set T :5 tr(H), where ‘‘tr’’ denotes the field
trace from L to Fp . The next theorem gives a description of Wp (m) in
terms of l and the cardinality t :5 uTu (under the standing assumption that
gcd(p 2 1, m) 5 1).

THEOREM 5.3. Let l and t be as defined above, and let

n :5 Lp 2 1
t 2 1J .

Then [ln, y)Z # Wp (m9) # Wp (m).

Proof. Applying the Cauchy-Davenport Theorem to the subset T in
Fp , we have u2 p Tu $ minhp, 2t 2 1j, and inductively ui p Tu $ minhp,
it 2 (i 2 1)j. By the definition of n, we have n(t 2 1) $ p 2 1, so
nt 2 (n 2 1) $ p. Therefore, un p Tu 5 p. In particular, for every
j $ 0, there exists an equation t1 1 ? ? ? 1 tn 5 2j [ Fp , where all
ti [ T. Now each ti [ tr(H) is a sum of l elements of H, so t1 1 ? ? ? 1
tn 1 j ? 1 5 0 is a vanishing sum of m9th roots of unity of weight ln 1 j.
This shows that [ln, y)Z # Wp (m9) # Wp (m), as desired. Q.E.D.

Note that the above theorem is meaningful only if we know that the
trace set T # Fp has at least two elements. Fortuitously, this is always the
case, according to the following result.

TRACE LEMMA 5.4. In the notations of (5.3), t 5 uTu $ 2.
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The proof of this lemma will be postponed to the last section (Section
6). We shall first assume this lemma and try to get to the main conclusions
of this section. Note that the larger the trace set T is, the better bound on
Wp (m) is given by (5.3). Since t $ 2 by (5.4), we have in any case:

COROLLARY 5.5. [l(p 2 1), y)Z # Wp (m9) # Wp (m).

Now consider any field K 5 Fpk containing the group G of all mth roots
of unity. Clearly, L # K, and H 5 L̇ > G. Let d 5 (pk 2 1)/m and d9 5
(pl 2 1)/m9. We now proceed to the proof of the following, which is a
stronger version of Theorem 1.3 in the case treated in this section.

THEOREM 5.6. Assume that gcd(p 2 1, m) 5 1. Then [d9, y)Z # Wp (m9)
and [d, y)Z # Wp (m) except in the following two special cases: (A) d9 5
p 2 1; (B) p 5 2, d9 5 3, and m9 5 5. In these special cases, we have
[d9 1 1, y)Z # Wp (m9) and [d 1 1, y)Z # Wp (m).

Proof. Since d9 5 [L̇ : H] 5 [L̇G : G] divides d 5 [K̇ : G] and m9 u m, it
suffices to prove the theorem for Wp (m9). Let

s 5 (pl21 1 ? ? ? 1 p 1 1)/m9, (5.7)

so that d9 5 s(p 2 1). First let us treat the special case (A), where we have
s 5 1. Here we are supposed to prove that [p, y)Z # Wp (m9). Since now
[L̇ : H] 5 p 2 1 (and H > Fp 5 h1j), we have L̇ 5 H ? Ḟp . Therefore, fixing
a primitive m9th root of unity a [ H, we have a 2 1 5 b21ai for some
integer i and some b [ Ḟp . For convenience, let us think of b as an integer
in [1, p 2 1]. Multiplying b ? 1 1 (p 2 b) ? 1 5 0 [ Fp by a and using the
relation ba 5 b 1 ai, we get

0 5 ba 1 (p 2 b)a 5 b ? 1 1 ai 1 (p 2 b)a,

which is a vanishing sum of weight p 1 1. Multiplying this by a again and
repeating the argument, we get vanishing sums (of m9th roots of unity) of
weight p 1 i for any i . 0. Coupled with p [ Wp (m9), this gives
[p, y)Z # Wp (m9), as desired. For the rest of the proof, we may asume that
s . 1. We claim the following:

LEMMA 5.8. s . 1 implies that s $ l, except perhaps when p 5 2 and
l 5 4, 6, 8, 9.

Thus, leaving aside the four special cases, we have d9 5 s(p 2 1) $
l(p 2 1), so the desired conclusion for Wp (m9) in (5.6) follows from (5.5).
The four special cases will have to be treated later.
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Proof of Lemma 5.8. We go into the following two cases.

Case 1. l is prime. We claim that l # q for any prime q u s (and therefore
l # s). In fact, from (5.7), we get pl21 1 ? ? ? 1 p 1 1 ; 0 (mod q), so
pl ; 1 (mod q). If p + 1 (mod q), then p has order l in U(Z/qZ) (since l
is prime), and so l u (q 2 1). In this case l # q 2 1 , q. If p ; 1 (mod q),
then from pl21 1 ? ? ? 1 p 1 1 ; l ; 0 (mod q), we have in fact l 5 q.

Case 2. l is composite. Let q be the smallest prime divisor of l and write
l 5 qt. Then 1 , t , l and (5.2) implies that gcd(pt 2 1, m) 5 1. Since
(pt 2 1) u (pl 2 1), we see that pt 2 1 divides (pl 2 1)/m9 5 s(p 2 1).
Thus, s $ (pt 2 1)/(p 2 1). We shall now exploit the following elementary
fact which is easy to prove using calculus:

LEMMA 5.9. px $ (p 2 1)x2 1 1 for every x [ [2, y)Z with the exception
of p 5 2 and x 5 2, 3, 4.

Applying this lemma to x 5 t, we get the desired conclusion

s $
pt 2 1
p 2 1

$ t2 $ qt 5 l,

except when p 5 2 and t 5 2, 3, 4. If t 5 2, we have q 5 2 so l 5 4. If
t 5 3, we have q 5 2, 3, so l 5 6 or 9. Finally, if t 5 4, we have q 5 2 so
l 5 8. This proves (5.8), but we still have to complete the proof of (5.6) in
the four special cases noted.

In these cases, d9 5 (2l 2 1)/m9, so both m9, d9 are odd (and .1). We
may assume that d9 , m9. (For, if d9 $ m9, we have [m9, y)Z # W2(m9)
since m9 is odd, and hence [d9, y)Z # W2(m9).) We simply have to check
the four outstanding cases individually.

(1) l 5 4. Here 2l 2 1 5 15, so d9 5 3, m9 5 5, and we are in the
case (B) of (5.6). The desired conclusion in this case is [4, y)Z # W2(m9),
which is true since 5 5 m9 [ W2(m9). In fact, by (2.6), we have W2(5) 5
2N 1 5N 5 h0, 2j < [4, y)Z . In particular, 3 Ó W2(5), so this case is
truly exceptional.

(2) l 5 6. Here 2l 2 1 5 63, so we have either d9 5 7, m9 5 9 or
d9 5 3, m9 5 21. In both cases, [2, y)Z # W2(m9) (since 2, 3 [ W2(m9)),
so there is no problem. (Actually, in the case d9 5 7, we are in the good
case s 5 d9 $ l already.)

(3) l 5 8. Here 2l 2 1 5 255, so we have either d9 5 5, m9 5 51 or
d9 5 15, m9 5 17. The latter case presents no problems, since we are once
more in the good case s 5 d9 $ l. In the former case, 3 u m9 implies that
W2(m9) 5 [2, y)Z , so again there is no problem.
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(4) l 5 9. Here 2l 2 1 5 511, so d9 5 7, m9 5 73. We have shown
in (2.5) that W2(73) 5 h0j < [2, y)Z , so there is no problem.

This finally completes the proof of Theorem 5.6.

6. TRACES OF mth ROOTS OF UNITY

In Section 5, we stated without proof the Trace Lemma 5.4, which was
crucial for the proofs of (5.5) and (5.6). In this section, we return to the
trace set T 5 tr(H) and ofer a general analysis of T which we believe to
be of independent interest. The proof of the Trace Lemma is an easy by-
product of this general analysis.

The notations (and hypotheses) introduced at the beginning of Section
5 will remain in force. In particular, H is the group of m9th roots of unity
in L 5 Fpl , and ‘‘tr’’ is the field trace from L to Fp . To enumerate the
elements in T, let

Xm9 2 1 5 (X 2 1)h1(X) ? ? ? hr(X) (6.1)

be the factorization of Xm9

2 1 into (monic) irreducibles over Fp . Then
deg hi $ l by the definition of l (and the fact that (Xm9 2 1) u (Xm 2 1)).
On the other hand, since L contains all m9th roots of unity, each hi(X)
splits completely in L, so deg hi # [L : Fp] 5 l. Therefore, deg hi 5 l for
all i. Let

hi(X) 5 Xl 2 aiXl21 1 ? ? ? , (6.2)

and let haijj be all the roots of hi(X) in L. For each hi , we can identify the
field Fp[X]/(hi(X)) with L by the correspondence X ←→ aij (for any j).
Therefore, tr(aij) 5 ok aik 5 ai for all i, j. We have thus

T 5 htr(1), a1 , . . . , arj 5 hl, a1 , . . . , arj, (6.3)

with possible duplications.
It is now easy to prove the Trace Lemma 5.4, which asserted that uTu $

2. Assume, for the moment, that T is a singleton. Then, by (6.3), ai 5 l for
all i. Summing all roots of the polynomial in (6.1) (and recalling that
m9 $ 2), we get

0 5 1 1 a1 1 ? ? ? 1 ar 5 1 1 rl 5 m9 [ Fp ,

contradicting the fact that m9 is prime to p.
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Equation (6.3) gives an upper bound uTu # 1 1 r, and this becomes an
equality iff the elements listed in (6.3) are distinct. This is the case, for
instance if l 5 2. To see this, note that the constant term of each hi(X) in
(6.1) is 1, since it is an mth root of unity in Fp , and we are assuming that
gcd(p 2 1, m) 5 1. Therefore, if l 5 2, we have hi(X) 5 X2 2 aiX 1 1.
Since the hi’s are distinct, so are the ai’s, and of course ai ? 2 (since otherwise
hi(X) 5 (X 2 1)2). Therefore, uTu 5 1 1 r, and (5.3) gives the pretty
good estimate

[2n, y)Z # Wp(m9) # Wp(m) with n 5 Lp 2 1
r J .

For a simple example of this, let p 5 5, and m 5 3. Here m9 5 3, l 5 2,
r 5 1, L 5 F25 , and uTu 5 2. By (2.6), W5(3) is the set

3N 1 5N 5 h0, 3, 5, 6j < [8, y)Z .

Since 2n 5 8, the conclusion in (5.3) is sharp here.
In general, t :5 uTu may be less than 1 1 r, since there may be duplications

among the elements of T listed in (6.3). For an example where interesting
duplications occur, take p 5 7 and m 5 19. Here m9 5 19 and l 5 3,
r 5 6. Mathematica gives a factorization

X19 2 1 5 (X 2 1)(X3 1 2X 1 6)(X3 1 4X2 1 X 1 6)
(X3 1 4X2 1 4X 1 6) ? (X3 1 5X2 1 6)
(X3 1 3X2 1 3X 1 6)(X3 1 6X2 1 3X 1 6) [ F7[X].

Since 24 5 3 5 tr(1) in F7 , T has only five (two less than 1 1 r 5 7)
distinct elements h0, 1, 2, 3, 4j. In this case, the number n in (5.3) is
L7 2 1

5 2 1J 5 2, and (5.3) shows that [6, y)Z # W7(19). Note that, in spite of
the trace duplications, this is still much sharper than what is given in (5.6).

In general, we cannot hope to improve upon the lower bound uTu $ 2.
For one thing, Fp may have only two elements to begin with. Also, we may
have r 5 1, in which case (5.4) and (6.3) show that uTu 5 2. Even if p $ 3
and r $ 2, there are many cases in which T is just a doubleton. Let us
illustrate the situation r 5 2 by taking m to be an odd prime q (so that
m9 5 q too), and assuming that p is also odd and has order l 5 (q 2 1)/2
in the group U(Z/qZ). In this case, r 5 2, and (6.1) becomes

Xq 2 1 5 (X 2 1)h1(X)h2(X), (6.4)

where h1 , h2 are monic irreducible (over Fp) of degree l. Following a
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standard notation in number theory, let us define q* to be q if q ; 1 (mod
4), and q* to be 2q if q ; 3 (mod 4). Then the size of the trace set T 5
tr(H) is determined as follows.

PROPOSITION 6.5. Under the above assumptions uTu 5 2 iff p u (q* 2 1)
(and uTu 5 3 otherwise).

Proof. Let E 5 Q(z), where z 5 e2fi/q, and fix a generator t of
U(Z/qZ). Then s : z ° zt is a generator for Gal(E/Q), and s 2: z ° zt2

is a generator for Gal(E/F), where F is the fixed field Es2
. Note that

Xq21 1 ? ? ? 1 X 1 1 factors into f(X)g(X) over F [X], where

f(X) 5 Xl 2 aXl21 1 ? ? ? and g(X) 5 Xl 2 bXl21 1 ? ? ?

are, respectively, the minimal polynomials of z and zt over F. We have

a 2 b 5 trE/F (z) 2 trE/F (z t) 5 Ol21

j50
z t2 j

2 Ol21

j50
z t2 j11

[ F.

This is precisely the quadratic Gauss sum (with respect to the Legendre
character on Fq), so by [IR, (8.2.2)], a 2 b 5 Ïq*. (Gauss showed that
the Ïq* here is the one taken in the upper half plane if q ; 3 (mod 4),
but this will not be needed in the following.) Since we also have
a 1 b 5 21, it follows that

a 5 (Ïq* 2 1)/2, b 5 2(Ïq* 1)/2.

Incidentally, this proves the well-known fact that F 5 Q(Ïq*).
Let R be the ring of algebraic integers in F. Since p is unramified in E,

it is also unramified in F, so pR 5 pp9, where p, p9 are distinct prime ideals
of R, both of residue degree 1. Identifying R/p with Fp , we may take the
polynomials h1 , h2 in (6.4) to be f and g where ‘‘bar’’ means reduction
modulo p. In particular, T 5 hl, a, bj by (6.3). Here the two elements a, b
are always different (for otherwise p would contain (a 2 b)2 5 q* as well
as p). Therefore, T will have only two elements iff p also contains

4(l 2 a)(l 2 b) 5 (q 2 Ïq*) (q 1 Ïq*) 5 q2 2 q* 5 q*(q* 2 1).

Since q* Ó p, this happens iff q* 2 1 [ p, that is, iff p u (q* 2 1), as
claimed. Q.E.D.

COROLLARY 6.6. Let q 5 2l 1 1 and p 5 2l9 1 1 be distinct primes such
that the order of p is l modulo q. If p u (q* 2 1), then [2ll9, y)Z # Wp(q).
Otherwise, [ll9, y)Z # Wp(q).
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Proof. This follows from (5.3) and (6.5), since the number n in (5.3) is
2l9 in the first case and l9 in the second case. Q.E.D.

EXAMPLE 6.7. Let q 5 11 (with q* 5 211). Then the primes 3 and 5
both have order l 5 (q 2 1)/2 5 5 modulo q, and according to Mathematica:

X11 2 1 5 (X 2 1)(X5 1 X4 1 2X3 1 X2 1 2)
(X5 1 2X3 1 X2 1 2X 1 2) [ F3[X],

X11 2 1 5 (X 2 1)(X5 1 2X4 1 4X3 1 X2 1 X 1 4)
(X5 1 4X4 1 4X3 1 X2 1 3X 1 4) [ F5[X].

Thus, for p 5 3, T 5 hl, 21, 0j 5 h2, 0j in F3 . This is consistent with (6.5)
since p 5 3 divides q* 2 1 5 212. Here, l 5 5, l9 5 1, so (6.6) gives [10,
y)Z # W3(11). (In fact, from 0, 2 [ T, we see easily that 5, 6 [ W3(11),
and so 8, 9 [ W3(11) also.) On the other hand, if we choose p 5 5,
then T 5 hl, 22, 24j 5 h0, 3, 1j in F5 , consistently with (6.5) since p 5 5
does not divide q* 2 1 5 212. Here, l 5 5, l9 5 2, so (6.6) gives again
[10, y)Z # W5(11), and 0, 1, 3 [ T show further that 5, 7, 9 [ W5(11).

The arguments in the proof of (6.5) can be generalized. However, if the
order of p modulo q is smaller than (q 2 1)/2 (in other words r . 2), the
computations of the trace elements in T will involve Gaussian sums with
(higher) character values as coefficients. We shall not go into this analysis
here. We should point out, however, that if q is fixed, then the prime ideal
method (in characteristic 0) used in the proof of (6.5) will suffice to show
that the upper bound uTu # 1 1 r becomes an equality for sufficiently large
p. Therefore, by (5.3),

[ln, y)Z # Wp(q) with n 5 Lp 2 1
r J ,

for sufficiently large p.
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