966 research outputs found

    Quark-Gluon Plasma Fireball

    Full text link
    Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb--Pb interactions.Comment: 10 pages, 9 postscript figures, 1 table, uses revtex, V3: introduced difference between n_f and n_s; fireball restframe energy corrected, references added. Publisched version in press Phys. Rev.

    Heavy Flavor Hadrons in Statistical Hadronization of Strangeness-rich QGP

    Get PDF
    We study b, c quark hadronization from QGP. We obtain the yields of charm and bottom flavored hadrons within the statistical hadronization model. The important novel feature of this study is that we take into account the high strangeness and entropy content of QGP, conserving strangeness and entropy yields at hadronization.Comment: v2 expended: 20 pages, 23 figures, 5 tables, in press EPJ-

    Observing Quark-Gluon Plasma with Strange Hadrons

    Full text link
    We review the methods and results obtained in an analysis of the experimental heavy ion collision research program at nuclear beam energy of 160-200A GeV. We study strange, and more generally, hadronic particle production experimental data. We discuss present expectations concerning how these observables will perform at other collision energies. We also present the dynamical theory of strangeness production and apply it to show that it agrees with available experimental results. We describe strange hadron production from the baryon-poor quark-gluon phase formed at much higher reaction energies, where the abundance of strange baryons and antibaryons exceeds that of nonstrange baryons and antibaryons.Comment: 39 journal pages (155kb text), 8 postscript figures, 8 table

    UHE tau neutrino flux regeneration while skimming the Earth

    Full text link
    The detection of Earth-skimming tau neutrinos has turned into a very promising strategy for the observation of ultra-high energy cosmic neutrinos. The sensitivity of this channel crucially depends on the parameters of the propagation of the tau neutrinos through the terrestrial crust, which governs the flux of emerging tau leptons that can be detected. One of the characteristics of this propagation is the possibility of regeneration through multiple ντ↔τ\nu_\tau \leftrightarrow \tau conversions, which are often neglected in the standard picture. In this paper, we solve the transport equations governing the ντ\nu_\tau propagation and compare the flux of emerging tau leptons obtained allowing regeneration or not. We discuss the validity of the approximation of neglecting the ντ\nu_\tau regeneration using different scenarios for the neutrino-nucleon cross-sections and the tau energy losses.Comment: 8 pages, 8 figure

    Angular Power Spectrum Estimation of Cosmic Ray Anisotropies with Full or Partial Sky Coverage

    Full text link
    We study the angular power spectrum estimate in order to search for large scale anisotropies in the arrival directions distribution of the highest-energy cosmic rays. We show that this estimate can be performed even in the case of partial sky coverage and validated over the full sky under the assumption that the observed fluctuations are statistically spatial stationary. If this hypothesis - which can be tested directly on the data - is not satisfied, it would prove, of course, that the cosmic ray sky is non isotropic but also that the power spectrum is not an appropriate tool to represent its anisotropies, whatever the sky coverage available. We apply the method to simulations of the Pierre Auger Observatory, reconstructing an input power spectrum with the Southern site only and with both Northern and Southern ones. Finally, we show the improvement that a full-sky observatory brings to test an isotropic distribution, and we discuss the sensitivity of the Pierre Auger Observatory to large scale anisotropies.Comment: 16 pages, 6 figures, version accepted for publication by JCA

    Significant in-medium reduction of the mass of eta' mesons in sqrt(s(NN)) = 200 GeV Au+Au collisions

    Full text link
    PHENIX and STAR data on the intercept parameter of the two-pion Bose-Einstein correlation functions in sNN=200\sqrt{s_{NN}}= 200 GeV Au+Au collisions were analysed in terms of various models of hadronic abundances. To describe these data, an in-medium η′\eta^\prime mass decrease of at least 200 MeV was needed in each case.Comment: Dedicated to 60th birthday of Miklos Gyulassy. 2 pages, 4 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Strangeness Conservation in Hot Nuclear Fireballs

    Full text link
    A constraint between thermal fireball parameters arises from the requirement that the balance of strangeness in a fireball is (nearly) zero. We study the impact of this constraint on (multi-)strange (anti-)baryon multiplicities and compare the hadron gas and quark-gluon plasma predictions. We explore the relation between the entropy content and particle multiplicities and show that the data are compatible with the quark-gluon plasma hypothesis, but appear to be inconsistent with the picture of an equilibrated hadron gas fireball. We consider the implications of the results on the dynamics of evolution and decay of the particle source.Comment: 35 pages, 11 postscript figures, report PAR/LPTHE/92--2

    Strangeness and Quark Gluon Plasma

    Full text link
    A brief summary of strangeness mile stones is followed by a chemical non-equilibrium statistical hadronization analysis of strangeness results at SPS and RHIC. Strange particle production in AA interactions at \sqrt{s_{NN}}\ge 8.6 GeV can be understood consistently as originating from the deconfined quark--gluon plasma in a sudden hadronization process. Onset of QGP formation as function of energy is placed in the beam energy interval 10--30A GeV/c. Strangeness anomalies at LHC are described.Comment: 30 pages including numerouse figures, tables. Opening Lecture: Strangeness and Quark Gluon Plasma -- what has been learned so far and where do we go at SQM2003, North Carolina, March 2003, submitted to J. Phys.

    Evolution of strangeness in equilibrating and expanding quark-gluon plasma

    Get PDF
    We evaluate the strangeness production from equilibrating and transversely expanding quark gluon plasma which may be created in the wake of relativistic heavy ion collisions. We consider boost invariant longitudinal and cylindrically symmetric transverse expansion of a gluon dominated partonic plasma, which is in local thermal equilibrium. Initial conditions obtained from the self screened parton cascade model are used. We empirically find that the final extent of the partonic equilibration rises almost linearly with the square of the initial energy density. This along with the corresponding variation with the number of participants may help us distinguish between various models of parton production.Comment: RevTex, 10 pages including 6 figures comprising 11 postscript files, text modified considerably with an added figure (Fig. 6) and this version accepted for publication in Phys. Rev.

    Nonextensive Statistics and Multiplicity Distribution in Hadronic Collisions

    Full text link
    The multiplicity distribution of particles in relativistic gases is studied in terms of Tsallis' nonextensive statistics. For an entropic index q>1 the multiplicity distribution is wider than the Poisson distribution with the same average number of particles, being similar to the negative binomial distribution commonly used in phenomenological analysis of hadron production in high-energy collisions
    • …
    corecore