438 research outputs found
Radical photoinduced cationic frontal polymerization in porous media
Two different interpenetrating phase composites were produced using a radical photoinduced cationic frontal polymerization process. The composites were based on polyurethane (PU) and aluminium open-cell foams impregnated with a formulation of a cycloaliphatic epoxy with different concentrations of a cationic photoinitiator and a thermal initiator. The influence of both types of initiators on the frontal polymerization features was systematically evaluated for the PU foam. It was found to occur only when the concentration of both initiators was greater than 0.5 wt%, leading to full conversion of the epoxy in the whole volume of the 15 mm thick composite samples within less than 100 s. The maximum temperature reached by the propagation front was in the range 275–305 °C depending on the type of formulation, leading to pores in the epoxy phase and extensive degradation of the PU phase. In the case of the opaque aluminium foam, an additional layer of pure resin was required on the UV-exposed surface, which corresponded to a critical mass of a few grams to ensure sufficient heat generation and trigger the front propagation. © 2020 Society of Chemical Industry
Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications
<p>Abstract</p> <p>Background</p> <p>Starch is of great importance to humans as a food and biomaterial, and the amount and structure of starch made in plants is determined in part by starch synthase (SS) activity. Five SS isoforms, SSI, II, III, IV and Granule Bound SSI, have been identified, each with a unique catalytic role in starch synthesis. The basic mode of action of SSs is known; however our knowledge of several aspects of SS enzymology at the structural and mechanistic level is incomplete. To gain a better understanding of the differences in SS sequences that underscore their specificity, the previously uncharacterised <it>SSIVb </it>from wheat was cloned and extensive bioinformatics analyses of this and other SSs sequences were done.</p> <p>Results</p> <p>The wheat SSIV cDNA is most similar to rice <it>SSIVb </it>with which it shows synteny and shares a similar exon-intron arrangement. The wheat <it>SSIVb </it>gene was preferentially expressed in leaf and was not regulated by a circadian clock. Phylogenetic analysis showed that in plants, SSIV is closely related to SSIII, while SSI, SSII and Granule Bound SSI clustered together and distinctions between the two groups can be made at the genetic level and included chromosomal location and intron conservation. Further, identified differences at the amino acid level in their glycosyltransferase domains, predicted secondary structures, global conformations and conserved residues might be indicative of intragroup functional associations.</p> <p>Conclusion</p> <p>Based on bioinformatics analysis of the catalytic region of 36 SSs and 3 glycogen synthases (GSs), it is suggested that the valine residue in the highly conserved K-X-G-G-L motif in SSIII and SSIV may be a determining feature of primer specificity of these SSs as compared to GBSSI, SSI and SSII. In GBSSI, the Ile485 residue may partially explain that enzyme's unique catalytic features. The flexible 380s Loop in the starch catalytic domain may be important in defining the specificity of action for each different SS and the G-X-G in motif VI could define SSIV and SSIII action particularly.</p
U–Pb zircon and monazite geochronology of post-collisional hercynian granitoids from the Central Iberian Zone (Northern Portugal)
In the Central Iberian Zone (CIZ) of the Iberian Massif large volumes of granitoids were emplaced during the post-collisional stage of the Hercynian orogeny (syn- to post-D3, the last ductile deformation phase). Twelve granitic units and a quartz monzodiorite were selected for a U–Pb zircon and monazite geochronological study. They represent successive stages of the D3 event. The Ucanha-Vilar, Lamego, Sameiro and Refoios do Lima plutons are coeval (313±2 Ma, 319±4 Ma, 316±2 Ma and 314±2 Ma, respectively) and belong to the earliest stage. Later on the Braga massif was emplaced, its different units yielding the same age: 309±3 Ma for the Braga granite, 309±1 Ma for the Gonça granite and 311±5 Ma for a related quartz monzodiorite. The Braga massif is subcontemporaneous with the Agrela and Celeirós plutons (307±3.5 Ma and 306±2 Ma, respectively), in agreement with field data. The Briteiros granite is younger (300±1 Ma), followed by the emplacement of the Peneda–Gerês massif (Gerês, Paufito, Illa and Carris granites). The Gerês granite, emplaced at 296±2 Ma, seems to represent a first magmatic pulse immediately followed by the intrusion of the Paufito granite at 290±2.5 Ma. For the Carris granite a minimum emplacement age of 280±5 Ma was obtained. Based on these results the following chronology is proposed: (1) syn-D3 biotite granitoids, 313–319 Ma; (2) late-D3 biotite-dominant granitoids, 306–311 Ma; (3) late- to post-D3 granitoids, ca. 300 Ma; (4) post-D3 granitoids, 290–296 Ma. These chronological data indicate that successive granitic intrusions were emplaced in the CIZ during a short time span of about 30 Ma that corresponds to the latest stages of the Hercynian orogeny. A rapid and drastic change occurred at about 300 Ma, between a compressive ductile tectonic regime (D3, ca. 300–320 Ma) associated to calc-alkaline, monzonitic and aluminopotassic plutonism and a fragile phase of deformation (D4) which controlled the emplacement of the subalkaline ferro-potassic plutonism at 290–296 Ma.Junta Nacional de Investigação Científica e Tecnológica - French Embassy Cooperation Programme and Research-Formation Network no. 38.
PRAXIS - project 2r2.1rCTAr391r94
NADP-Dependent Isocitrate Dehydrogenase from Arabidopsis Roots Contributes in the Mechanism of Defence against the Nitro-Oxidative Stress Induced by Salinity
NADPH regeneration appears to be essential in the mechanism of plant defence against oxidative stress. Plants contain several NADPH-generating dehydrogenases including isocitrate dehydrogenase (NADP-ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and malic enzyme (ME). In Arabidopsis seedlings grown under salinity conditions (100 mM NaCl) the analysis of physiological parameters, antioxidant enzymes (catalase and superoxide dismutase) and content of superoxide radical (O2 ∙−), nitric oxide (NO), and peroxynitrite (ONOO−) indicates a process of nitro-oxidative stress induced by NaCl. Among the analysed NADPH-generating dehydrogenases under salinity conditions, the NADP-ICDH showed the maximum activity mainly attributable to the root NADP-ICDH. Thus, these data provide new insights on the relevance of the NADP-ICDH which could be considered as a second barrier in the mechanism of response against the nitro-oxidative stress generated by salinity
Mechanisms of Mitochondria–Neurofilament Interactions
Mitochondria are localized to regions of the cell where ATP consumption is high and are dispersed according to changes in local energy needs. In addition to motion directed by molecular motors, mitochondrial distribution in neuronal cells appears to depend on the docking of mitochondria to microtubules and neurofilaments. We examined interactions between mitochondria and neurofilaments using fluorescence microscopy, dynamic light scattering, atomic force microscopy, and sedimentation assays. Mitochondria-neurofilament interactions depend on mitochondrial membrane potential, as revealed by staining with a membrane potential sensitive dye (JC-1) in the presence of substrates/ADP or uncouplers (valinomycin/carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone) and are affected by the phosphorylation status of neurofilaments and neurofilament sidearms. Antibodies against the neurofilament heavy subunit disrupt binding between mitochondria and neurofilaments, and isolated neurofilament sidearms alone interact with mitochondria, suggesting that they mediate the interactions between the two structures. These data suggest that specific and regulated mitochondrial-neurofilament interactions occur in situ and may contribute to the dynamic distribution of these organelles within the cytoplasm of neurons
Cohesive strength of nanocrystalline ZnO:Ga thin films deposited at room temperature
In this study, transparent conducting nanocrystalline ZnO:Ga (GZO) films were deposited by dc magnetron sputtering at room temperature on polymers (and glass for comparison). Electrical resistivities of 8.8 × 10-4 and 2.2 × 10-3 Ω cm were obtained for films deposited on glass and polymers, respectively. The crack onset strain (COS) and the cohesive strength of the coatings were investigated by means of tensile testing. The COS is similar for different GZO coatings and occurs for nominal strains approx. 1%. The cohesive strength of coatings, which was evaluated from the initial part of the crack density evolution, was found to be between 1.3 and 1.4 GPa. For these calculations, a Young's modulus of 112 GPa was used, evaluated by nanoindentation
Valorization of byproducts of hemp multipurpose crop: Short non-aligned bast fibers as a source of nanocellulose
Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5–12 nm, stacks of nanofibrils with widths of 20–200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils
Análisis de la nitración fisiológica de proteínas en órganos de plantas de guisante (Pisum sativum L) durante su desarrollo y senescencia
Comunicaciones a congreso
MATE, a single front-end ASIC for silicon strip, Si(Li) and CsI detectors
MATE (Must ASIC for Time and Energy) will process signals delivered from the hodoscope MUST2. The hodoscope consists of six large area telescopes (100 cm²), each made up of a double sided Si strip detector followed by a Si(Li) and Csi crystal. MATE has sixteen channels and can deliver three types of analogue information per channel; time of flight and energy loss of the detected particle; value of leakage DC current per channel. MATE also gives a trigger logical signal corresponding to the cross over of an adjustable threshold value. The analogue information is transmitted as differential current through twisted pair to the acquisition system based on VXI-C. The slow control is assured via the I2C industrial protocol. The first version of MATE for Si(strip) is available. An update of MATE will allow it to be used for the Si(Li) and Csi detectors. MATE is a novel R&D project for nuclear physics which includes both energy and time measurements with good resolution and high energy dynamic range
- …