472 research outputs found

    Conformal Collineations and Ricci Inheritance Symmetry in String Cloud and String Fluids

    Full text link
    Conformal collineations (a generalization of conformal motion) and Ricci inheritance collineations, defined by £ξRab=2αRab\pounds_\xi R_{ab}=2\alpha R_{ab}, for string cloud and string fluids in general relativity are studied. By investigating the kinematical and dynamical properties of such fluids and using the field equations, some recent studies on the restrictions imposed by conformal collineations are extended, and new results are found.Comment: 12 pages, LaTeX, no figures, to appear in Int. J. Mod. Phys.

    Galaxy rotation curves from General Relativity with Renormalization Group corrections

    Full text link
    We consider the application of quantum corrections computed using renormalization group arguments in the astrophysical domain and show that, for the most natural interpretation of the renormalization group scale parameter, a gravitational coupling parameter GG varying 10710^{-7} of its value across a galaxy (which is roughly a variation of 101210^{-12} per light-year) is sufficient to generate galaxy rotation curves in agreement with the observations. The quality of the resulting fit is similar to the Isothermal profile quality once both the shape of the rotation curve and the mass-to-light ratios are considered for evaluation. In order to perform the analysis, we use recent high quality data from nine regular disk galaxies. For the sake of comparison, the same set of data is modeled also for the Modified Newtonian Dynamics (MOND) and for the recently proposed Scalar Tensor Vector Gravity (STVG). At face value, the model based on quantum corrections clearly leads to better fits than these two alternative theories.Comment: 35 pages, 12 PDF figures. v4: Version accepted in JCAP. Improved comments on the galactic gas effects to our model, stressed the relevance of our MOND and STVG fits, slightly extended discussion on our perspectives and minor additional comments. Ref's added

    Chaos and Rotating Black Holes with Halos

    Get PDF
    The occurrence of chaos for test particles moving around a slowly rotating black hole with a dipolar halo is studied using Poincar\'e sections. We find a novel effect, particles with angular momentum opposite to the black hole rotation have larger chaotic regions in phase space than particles initially moving in the same direction.Comment: 9 pages, 4 Postscript figures. Phys. Rev. D, in pres

    Acceleration, streamlines and potential flows in general relativity: analytical and numerical results

    Full text link
    Analytical and numerical solutions for the integral curves of the velocity field (streamlines) of a steady-state flow of an ideal fluid with p=ρp = \rho equation of state are presented. The streamlines associated with an accelerate black hole and a rigid sphere are studied in some detail, as well as, the velocity fields of a black hole and a rigid sphere in an external dipolar field (constant acceleration field). In the latter case the dipole field is produced by an axially symmetric halo or shell of matter. For each case the fluid density is studied using contour lines. We found that the presence of acceleration is detected by these contour lines. As far as we know this is the first time that the integral curves of the velocity field for accelerate objects and related spacetimes are studied in general relativity.Comment: RevTex, 14 pages, 7 eps figs, CQG to appea

    Geodesics around Weyl-Bach's Ring Solution

    Full text link
    We explore some of the gravitational features of a uniform ring both in the Newtonian potential theory and in General Relativity. We use a spacetime associated to a Weyl static solution of the vacuum Einstein's equations with ring like singularity. The Newtonian motion for a test particle in the gravitational field of the ring is studied and compared with the corresponding geodesic motion in the given spacetime. We have found a relativistic peculiar attraction: free falling particle geodesics are lead to the inner rim but never hit the ring.Comment: 8 figures, 14 pages. LaTeX w/ subfigure, graphic

    Exact General Relativistic Disks with Magnetic Fields

    Get PDF
    The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bicak, Lynden-Bell and Katz [Phys. Rev. D47, 4334, 1993] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.Comment: 21 pages, 11 figures, uses package graphics, accepted in PR

    Potential flows in a core-dipole-shell system: numerical results

    Get PDF
    Numerical solutions for: the integral curves of the velocity field (streamlines), the density contours, and the accretion rate of a steady-state flow of an ideal fluid with p=K n^(gamma) equation of state orbiting in a core-dipole-shell system are presented. For 1 < gamma < 2, we found that the non-linear contribution appearing in the partial differential equation for the velocity potential has little effect in the form of the streamlines and density contour lines, but can be noticed in the density values. The study of several cases indicates that this appears to be the general situation. The accretion rate was found to increase when the constant gamma decreases.Comment: RevTex, 8 pages, 5 eps figures, CQG to appea

    Scattering map for two black holes

    Get PDF
    We study the motion of light in the gravitational field of two Schwarzschild black holes, making the approximation that they are far apart, so that the motion of light rays in the neighborhood of one black hole can be considered to be the result of the action of each black hole separately. Using this approximation, the dynamics is reduced to a 2-dimensional map, which we study both numerically and analytically. The map is found to be chaotic, with a fractal basin boundary separating the possible outcomes of the orbits (escape or falling into one of the black holes). In the limit of large separation distances, the basin boundary becomes a self-similar Cantor set, and we find that the box-counting dimension decays slowly with the separation distance, following a logarithmic decay law.Comment: 20 pages, 5 figures, uses REVTE

    Rotating Relativistic Thin Disks

    Get PDF
    Two families of models of rotating relativistic disks based on Taub-NUT and Kerr metrics are constructed using the well-known "displace, cut and reflect" method. We find that for disks built from a generic stationary axially symmetric metric the "sound velocity", (pressure/density)1/2(pressure/density)^{1/2}, is equal to the geometric mean of the prograde and retrograde geodesic circular velocities of test particles moving on the disk. We also found that for generic disks we can have zones with heat flow. For the two families of models studied the boundaries that separate the zones with and without heat flow are not stable against radial perturbations (ring formation).Comment: 18 eps figures, to be published PR
    corecore