19 research outputs found

    The local and global geometrical aspects of the twin paradox in static spacetimes: I. Three spherically symmetric spacetimes

    Get PDF
    We investigate local and global properties of timelike geodesics in three static spherically symmetric spacetimes. These properties are of its own mathematical relevance and provide a solution of the physical `twin paradox' problem. The latter means that we focus our studies on the search of the longest timelike geodesics between two given points. Due to problems with solving the geodesic deviation equation we restrict our investigations to radial and circular (if exist) geodesics. On these curves we find general Jacobi vector fields, determine by means of them sequences of conjugate points and with the aid of the comoving coordinate system and the spherical symmetry we determine the cut points. These notions identify segments of radial and circular gepdesics which are locally or globally of maximal length. In de Sitter spacetime all geodesics are globally maximal. In CAdS and Bertotti--Robinson spacetimes the radial geodesics which infinitely many times oscillate between antipodal points in the space contain infinite number of equally separated conjugate points and there are no other cut points. Yet in these two spacetimes each outgoing or ingoing radial geodesic which does not cross the centre is globally of maximal length. Circular geodesics exist only in CAdS spacetime and contain an infinite sequence of equally separated conjugate points. The geodesic curves which intersect the circular ones at these points may either belong to the two-surface θ=π/2\theta=\pi/2 or lie outside it.Comment: 27 pages, 0 figures, typos corrected, version published in APP

    Jacobi fields, conjugate points and cut points on timelike geodesics in special spacetimes

    Get PDF
    Several physical problems such as the `twin paradox' in curved spacetimes have purely geometrical nature and may be reduced to studying properties of bundles of timelike geodesics. The paper is a general introduction to systematic investigations of the geodesic structure of physically relevant spacetimes. The investigations are focussed on the search of locally and globally maximal timelike geodesics. The method of dealing with the local problem is in a sense algorithmic and is based on the geodesic deviation equation. Yet the search for globally maximal geodesics is non-algorithmic and cannot be treated analytically by solving a differential equation. Here one must apply a mixture of methods: spacetime symmetries (we have effectively employed the spherical symmetry), the use of the comoving coordinates adapted to the given congruence of timelike geodesics and the conjugate points on these geodesics. All these methods have been effectively applied in both the local and global problems in a number of simple and important spacetimes and their outcomes have already been published in three papers. Our approach shows that even in Schwarzschild spacetime (as well as in other static spherically symetric ones) one can find a new unexpected geometrical feature: instead of one there are three different infinite sets of conjugate points on each stable circular timelike geodesic curve. Due to problems with solving differential equations we are dealing solely with radial and circular geodesics.Comment: A revised and expanded version, self-contained and written in an expository style. 36 pages, 0 figures. A substantially abridged version appeared in Acta Physica Polonica

    Test-field limit of metric nonlinear gravity theories

    Get PDF
    In the framework of alternative metric gravity theories, it has been shown by several authors that a generic Lagrangian depending on the Riemann tensor describes a theory with 8 degrees of freedom (which reduce to 3 for f(R) Lagrangians depending only on the curvature scalar). This result is often related to a reformulation of the fourth-order equations for the metric into a set of second-order equations for a multiplet of fields, including a massive scalar field and a massive spin-2 field. In this article we investigate an issue which does not seem to have been addressed so far: in ordinary general-relativistic field theories, all fundamental fields (i.e. fields with definite spin and mass) reduce to test fields in some appropriate limit of the model, where they cease to act as sources for the metric curvature. In this limit, each of the fundamental fields can be excited from its ground state independently from the others. The question is: does higher-derivative gravity admit a test-field limit for its fundamental fields? It is easy to show that for a f(R) theory the test-field limit does exist; then, we consider the case of Lagrangians quadratically depending on the full Ricci tensor. We show that the constraint binding together the scalar field and the massive spin-2 field does not disappear in the limit where they should be expected to act as test fields, except for a particular choice of the Lagrangian, which cause the scalar field to disappear (reducing to 7 DOF). We finally consider the addition of an arbitrary function of the quadratic invariant of the Weyl tensor and show that the resulting model still lacks a proper test-field limit. We argue that the lack of a test-field limit for the fundamental fields may constitute a serious drawback of the full 8 DOF higher-order gravity models, which is not encountered in the restricted 7 DOF or 3 DOF cases.Comment: Title and abstract modified to make the content of the paper more clear and readabl

    On the twin paradox in static spacetimes: I. Schwarzschild metric

    Get PDF
    Motivated by a conjecture put forward by Abramowicz and Bajtlik we reconsider the twin paradox in static spacetimes. According to a well known theorem in Lorentzian geometry the longest timelike worldline between two given points is the unique geodesic line without points conjugate to the initial point on the segment joining the two points. We calculate the proper times for static twins, for twins moving on a circular orbit (if it is a geodesic) around a centre of symmetry and for twins travelling on outgoing and ingoing radial timelike geodesics. We show that the twins on the radial geodesic worldlines are always the oldest ones and we explicitly find the conjugate points (if they exist) outside the relevant segments. As it is of its own mathematical interest, we find general Jacobi vector fields on the geodesic lines under consideration. In the first part of the work we investigate Schwarzschild geometry.Comment: 18 pages, paper accepted for publication in Gen. Rel. Gra

    Metric gravity theories and cosmology:II. Stability of a ground state in f(R) theories

    Full text link
    A fundamental criterion of viability of any gravity theory is existence of a stable ground-state solution being either Minkowski, dS or AdS space. Stability of the ground state is independent of which frame is physical. In general, a given theory has multiple ground states and splits into independent physical sectors. All metric gravity theories with the Lagrangian being a function of Ricci tensor are dynamically equivalent to Einstein gravity with a source and this allows us to study the stability problem using methods developed in GR. We apply these methods to f(R) theories. As is shown in 13 cases of Lagrangians the stability criterion works simply and effectively whenever the curvature of the ground state is determined. An infinite number of gravity theories have a stable ground state and further viability criteria are necessary.Comment: A modified and expanded version of a second part of the paper which previously appeared as gr-qc/0702097v1. The first, modified part is now published as gr-qc/0702097v2 and as a separate paper in Class. Qu. Grav. The present paper matches the published versio

    Nonlinear massive spin-two field generated by higher derivative gravity

    Get PDF
    We present a systematic exposition of the Lagrangian field theory for the massive spin-two field generated in higher-derivative gravity. It has been noticed by various authors that this nonlinear field overcomes the well known inconsistency of the theory for a linear massive spin-two field interacting with Einstein's gravity. Starting from a Lagrangian quadratically depending on the Ricci tensor of the metric, we explore the two possible second-order pictures usually called "(Helmholtz-)Jordan frame" and "Einstein frame". In spite of their mathematical equivalence, the two frames have different structural properties: in Einstein frame, the spin-two field is minimally coupled to gravity, while in the other frame it is necessarily coupled to the curvature, without a separate kinetic term. We prove that the theory admits a unique and linearly stable ground state solution, and that the equations of motion are consistent, showing that these results can be obtained independently in either frame. The full equations of motion and the energy-momentum tensor for the spin--two field in Einstein frame are given, and a simple but nontrivial exact solution to these equations is found. The comparison of the energy-momentum tensors for the spin-two field in the two frames suggests that the Einstein frame is physically more acceptable. We point out that the energy-momentum tensor generated by the Lagrangian of the linearized theory is unrelated to the corresponding tensor of the full theory. It is then argued that the ghost-like nature of the nonlinear spin-two field, found long ago in the linear approximation, may not be so harmful to classical stability issues, as has been expected

    On the issue of gravitons

    Get PDF
    We investigate the problem of whether one can anticipate any features of the graviton without a detailed knowledge of a full quantum gravity. Assuming that in linearized gravity the graviton is in a sense similar to the photon, we derive a curious large number coincidence between the number of gravitons emitted by a solar planet during its orbital period and the number of its nucleons. In Einstein's GR the analogy between the graviton and the photon is ill founded. A generic relationship between quanta of a quantum field and plane waves of the corresponding classical field is broken in the case of GR. The graviton cannot be classically approximated by a generic pp wave nor by the exact plane wave. Most important, the ADM energy is a zero frequency characteristic of any asymptotically flat spacetime and this means that any general relationship between energy and frequency is a priori impossible. In particular the formula E=ωE=\hbar \omega does not hold. The graviton must have features different from those of the photon and these cannot be predicted from classical general relativity.Comment: 14 pages. One phrase adde
    corecore