25 research outputs found
Intraneural synovial sarcoma of the median nerve
Synovial sarcomas are soft-tissue malignancies with a poor prognosis and propensity for distant metastases. Although originally believed to arise from the synovium, these tumors have been found to occur anywhere in the body. We report a rare case of synovial sarcoma arising from the median nerve. To our knowledge, this is the twelfth reported case of intraneural synovial sarcoma, and only the fourth arising from the median nerve. Because the diagnosis may not be apparent until after pathological examination of the surgical specimen, synovial sarcoma should be kept in mind when dealing with what may seem like a benign nerve tumor
Novel Functional MAR Elements of Double Minute Chromosomes in Human Ovarian Cells Capable of Enhancing Gene Expression
Double minute chromosomes or double minutes (DMs) are cytogenetic hallmarks of extrachromosomal genomic amplification and play a critical role in tumorigenesis. Amplified copies of oncogenes in DMs have been associated with increased growth and survival of cancer cells but DNA sequences in DMs which are mostly non-coding remain to be characterized. Following sequencing and bioinformatics analyses, we have found 5 novel matrix attachment regions (MARs) in a 682 kb DM in the human ovarian cancer cell line, UACC-1598. By electrophoretic mobility shift assay (EMSA), we determined that all 5 MARs interact with the nuclear matrix in vitro. Furthermore, qPCR analysis revealed that these MARs associate with the nuclear matrix in vivo, indicating that they are functional. Transfection of MARs constructs into human embryonic kidney 293T cells showed significant enhancement of gene expression as measured by luciferase assay, suggesting that the identified MARS, particularly MARs 1 to 4, regulate their target genes in vivo and are potentially involved in DM-mediated oncogene activation
Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies
Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis
t(1;1)(p36;q21) in non Hodgkin lymphoma
Review on t(1;1)(p36;q21) in non Hodgkin lymphoma, with data on clinics, and the genes involved
Epithelio-mesenchymal transition in a neoplastic ovarian epithelial hybrid cell line
A hybrid cell line, IOSE-Ov29, was created through fusion of cells from the human ovarian adenocarcinoma line OVCAR3 and the non-tumorigenic SV40 Tag-transfected human ovarian surface epithelial line IOSE-29. OVCAR3 cells exhibit a differentiated epithelial phenotype, whereas line IOSE-29 expresses mesenchymal characteristics that were acquired in culture by epithelio-mesenchymal transition. Microsatellite analysis, comparative genomic hybridization (CGH), and MFISH showed the genotype of the IOSE-Ov29 cells to contain components of both parent cell lines, but to be predominantly OVCAR3 derived. IOSE-Ov29 resembled OVCAR3 and differed from IOSE-29 as shown by its unlimited life span, tumorigenicity, epithelial morphology, keratin, occludin, E-cadherin and CA125 expression, increased expression of kinases of the PI3K pathway, and loss of cGMP-dependent protein kinase expression. IOSE-29-derived properties included SV40 Tag expression, growth inhibition by activin, collagen type III secretion, increased adhesion and spreading on tissue culture plastic, and increased growth rate. Proliferation of all three lines was stimulated by FSH and ATP and inhibited by GnRH I and GnRH II. Interestingly, IOSE-Ov29 was more anchorage independent than either parent line and was the only line that invaded Matrigel in Boyden chambers and formed invasive branches in collagen gels. The results indicate that IOSE-Ov29 is an IOSE-29/OVCAR3 hybrid, which differs from both parent lines genetically and phenotypically. Unexpectedly, fusion with the non-tumorigenic IOSE-29 cells enhanced malignancy-associated characteristics of OVCAR3, presumably as a result of the expression of IOSE-29-derived mesenchymal properties that are usually acquired by carcinoma cells through epithelio-mesenchymal transition during metastatic progression. © International Society of Differentiation 2004.link_to_subscribed_fulltex