35 research outputs found

    Preliminary Tests and Results Concerning Integration of Sentinel-2 and Landsat-8 OLI for Crop Monitoring

    Get PDF
    The Sentinel-2 data by European Space Agency were recently made available for free. Their technical features suggest synergies with Landsat-8 dataset by NASA (National Aeronautics and Space Administration), especially in the agriculture context were observations should be as dense as possible to give a rather complete description of macro-phenology of crops. In this work some preliminary results are presented concerning geometric and spectral consistency of the two compared datasets. Tests were performed specifically focusing on the agriculture-devoted part of Piemonte Region (NW Italy). Geometric consistencies of Sentinel-2 and Landsat-8 datasets were tested “absolutely” (in respect of a selected reference frame) and “relatively” (one in respect of the other) by selecting, respectively, 160 and 100 well distributed check points. Spectral differences affecting at-the-ground reflectance were tested after images calibration performed by dark object subtraction approach. A special focus was on differences affecting derivable NDVI and NDWI spectral indices, being the most widely used in the agriculture remote sensing application context. Results are encouraging and suggest that this approach can successfully enter the ordinary remote sensing-supported precision farming workflow

    UVC-Mirror for effective pathogens inactivation in air ducts

    Get PDF
    Improving the air quality of indoor environments (IAQ) is of utmost importance to safeguard public health as people spend about 80–90% of their time indoor. Efficient Ultraviolet germicidal irradiation (UVGI) system represents a strategic and sustainable solution to protect from recurrent and new airborne pathogens. Here, we present a new approach to design highly efficient UVGI systems, which can be installed in existing Air Treatment Units (ATU) plants with minimal effort. The increased efficiency relies on the concept of an optical cavity, thanks to its shape and source position. The internal volume consists of a highly reflective cavity illuminated with UV-C lamps. Optical simulations permitted the variation of the parameters to maximize the internal irradiance and, thus, the performance. The sanitation efficacy of the system was assessed on a full-scale pilot system. Tests were carried out under normal operating conditions against various microorganisms showed an inactivation rate of > 99%. The benefits of such systems are triple and encompass economic, environmental, and societal aspects. Since the system requires little energy to operate, its application for air disinfection may yield significant energy savings and ensure a balance between energy sustainability and good IAQ

    In-lab characterization of HYPSOS, a novel stereo hyperspectral observing system: first results

    Get PDF
    HYPSOS (HYPerspectral Stereo Observing System, patented) is a novel remote sensing instrument able to extract the spectral information from the two channels of a pushbroom stereo camera; thus it simultaneously provides 4D information, spatial and spectral, of the observed features. HYPSOS has been designed to be a compact instrument, compatible with small satellite applications, to be suitable both for planetary exploration as well for terrestrial environmental monitoring. An instrument with such global capabilities, both in terms of scientific return and needed resources, is optimal for fully characterizing the observed surface of investigation. HYPSOS optical design couples a pair of folding mirrors to a modified three mirror anastigmat telescope for collecting the light beams from the optical paths of the two stereo channels; then, on the telescope focal plane, there is the entrance slit of an imaging spectrograph, which selects and disperses the light from the two stereo channels on a bidimensional detector. With this optical design, the two stereo channels share the large majority of the optical elements: this allowed to realize a very compact instrument, which needs much less resources than an equivalent system composed by a stereo camera and a spectrometer. To check HYPSOS actual performance, we realized an instrument prototype to be operated in a laboratory environment. The laboratory setup is representative of a possible flight configuration: the light diffused by a surface target is collimated on the HYPSOS channel entrance apertures, and the target is moved with respect to the instrument to reproduce the in- flight pushbroom acquisition mode. Here we describe HYPSOS and the ground support equipment used to characterize the instrument, and show the preliminary results of the instrument alignment activities

    SHARK-NIR, the coronagraphic camera for LBT, moving toward construction

    Full text link
    SHARK-NIR is one of the two coronagraphic instruments proposed for the Large Binocular Telescope. Together with SHARK-VIS (performing coronagraphic imaging in the visible domain), it will offer the possibility to do binocular observations combining direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy in a wide wavelength domain, going from 0.5{\mu}m to 1.7{\mu}m. Additionally, the contemporary usage of LMIRCam, the coronagraphic LBTI NIR camera, working from K to L band, will extend even more the covered wavelength range. In January 2017 SHARK-NIR underwent a successful final design review, which endorsed the instrument for construction and future implementation at LBT. We report here the final design of the instrument, which foresees two intermediate pupil planes and three focal planes to accomodate a certain number of coronagraphic techniques, selected to maximize the instrument contrast at various distances from the star. Exo-Planets search and characterization has been the science case driving the instrument design, but the SOUL upgrade of the LBT AO will increase the instrument performance in the faint end regime, allowing to do galactic (jets and disks) and extra-galactic (AGN and QSO) science on a relatively wide sample of targets, normally not reachable in other similar facilities.Comment: 8 pages, 6 figures, AO4ELT5 conference proceeding
    corecore