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Abstract
Vegetation indices represent an effective and widely used tool for monitoring vegetation 
changes in time and space. Unfortunately, in many works index uncertainty is not reported, 
making interpretation unreliable. In this paper we propose an operational approach for 
estimating NDVI uncertainty, based on the propagation of variance of factors defining the 
adopted radiative transfer model. Two Landsat 8 Operational Land Imager (OLI) images 
were used to test the method and discuss results. An agriculture-devoted area located in 
NW Italy was chosen as case study. Results showed that: a) the major contribution to NDVI 
uncertainty comes from topographic and atmospheric factors; b) uncertainty varies in space 
and time and depends on sensor spectral bands; c) NDVI uncertainty estimates can be 
exploited to map NDVI significant differences in space and time.
Keywords: Sensitivity analysis, NDVI accuracy, image calibration, Landsat 8OLI, 
radiative transfer model.

Introduction
In the context of optical remote sensing spectral indices represent a powerful tool to 
monitor and describe surfaces’ changes in time and space with the goal of improving land 
management [Gilabert et al., 2002; Kallel et al., 2007; Jiang et al., 2008]. Specifically, 
vegetation indices are widely used in both forest and agriculture context, especially when 
large areas have to be monitored [Xiao and Moody, 2005]. Vegetation index products have 
been extensively used by the scientific community in vegetation [Azzali and Menenti, 2000] 
and biodiversity [Oindo and Skidmore, 2002] mapping, ecosystem phenology assessing 
[Schwartz et al., 2002] and becoming regularly used by natural resource managers and 
decision makers [Van Leeuwen and Orr, 2006].
A sensitivity analysis concerning primary data processing is very important for a correct 
interpretation of derived indices. In particular in change detection and multi-temporal analysis 
[Du et al., 2002; Janzen et al., 2006], this is a very important issue since significant index 
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differences has to be recognized. A quantification of the potential uncertainty of final products 
(e.g. of NDVI maps) is, therefore, essential. Primary data uncertainty, in fact, affects and 
impacts reliability of vegetation indices and related biophysical parameters [Huemmrich 
and Goward, 1992; Price, 1992], compromising their effectiveness. Nevertheless, works 
involving spectral indexes do not generally quantify uncertainty. This fact can be partially 
explained by the nature of the index itself, for which, in the most of cases, no reference data 
exists for a-posteriori validation that can be achieved only comparing some image-derived 
sample estimations with the correspondent ground surveyed ones [Beck et al., 2007; Verger 
et al., 2009]. Unfortunately, this step requires that a ground survey is made contemporarily to 
the flight by expensive spectro-radiometers and time consuming campaigns. These conditions 
cannot be satisfied for many applications and, for sure, when past acquisitions have to be 
processed. Where this situation occurs, the only possibility is to proceed to an a-priori 
(potential) uncertainty estimation of the final product that, necessarily, relies on a preventive 
estimation of uncertainty affecting reflectances used for index calculation, which are mainly 
related to the radiative transfer model (RTM) used to calibrate raw data. Literature is not so 
exhaustive concerning this issue. Attention is mainly focused on limits of sensors [Roderick et 
al., 1996; Li and Liu, 2012] and, when a trial is done, only one by one uncertainty responsible 
factor is considered. Many works, for example, reported that the impact of atmospheric 
scattering is not negligible [Miura et al., 2000; Tan et al., 2012, Vaudour et al., 2014], and that 
ortho-projection [Fontana et al., 2009] and topography [Hantson and Chuvieco, 2011; Singh 
et al., 2011] are impactful factors in at-the-ground reflectance recovering as well. Some other 
studies investigated the role of atmospheric scattering in determining uncertainty of indirect 
measures (e.g. LAI) through the adoption of physically based RTM [Myneni et al., 1997; 
Kobayashi et al., 2013; Mannschatz et al., 2014]. Nagol et al. [2009] tried to quantify NDVI 
uncertainty finding that it ranges between 0.03 and 0.08 for AVHRR data.
Huete [1994] stressed that “NDVI is unstable, varying with soil, sun-view geometry, 
atmospheric conditions, and the presence of dead material, as well as with changes within 
the canopy itself” but did not offer a quantification of these effects. Finally Burgess et al. 
[1995], referring to AVHRR data, underlined that “successful NDVI studies are carried 
out in large, relatively flat parts of the world (…). This type of terrain is ideal, given that 
the resolution of the data at nadir is relatively low at 1.1 km, and a large flat test site 
with contiguous ground cover allows statistically significant measurements to be made. 
However, the consequence of this is that the issue of the effect of topography on the NDVI 
measure has largely been ignored in the literature. If there is a dependence on topography, 
then there are many terrestrial areas where it is not reasonable to ignore the effect”.
No specific work can, anyway, be found concerning a comprehensive study of uncertainty 
affecting index calculation. Therefore, an operational approach for its estimation is required, 
and, possibly, it should take into consideration those factors, as radiance, topography, 
transmittance, scattering and sun irradiance, that participates to the adopted RTM. The main 
goal of this work is the presentation of an operative approach for an a-priori estimation of at-
the-ground reflectance σσ ρρ( ) , NDVI and NDVI difference (in time) uncertainty (hereinafter 
called respectively σσ NDVI  and σσ ∆ NDVI ). Since NDVI is probably the most widely used 
spectral index [Kerr and Ostrovsky, 2003; Pettorelli et al., 2005; Glenn et al., 2008], it 
was chosen as the representative of a wider group of remote sensing derived spectral 
indices. Consequently, presented methodology can be applied to all similar computations 
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concerning other indices. For their task authors applied the Variance Propagation Law 
(VPL) [Bevington and Robinson, 2002] to the simplified RTM described by Moran et al. 
[1992] to estimate σσ ρρ  and, successively, σσ NDVI  and σσ ∆ NDVI .
The test area, located in South Piedmont, North-Western Italy, represents a typical regional 
agricultural context surrounded by hilly and pre-mountainous zones.
Two Landsat 8 Operational Land Imager (OLI) [U.S. Geological Survey, 2015] acquisitions 
(September and October 2014) were used to investigate at-the-ground reflectance 
uncertainty and its effects along NDVI/NDVI difference computation, focusing on its 
distribution in space and time. Both images were therefore calibrated, into at-the-ground 
reflectance, using the above mentioned RTM and σσ ρρ  was contemporarily estimated for 
all bands. Moreover the contribution given by each factor involved in RTM to σσ ρρ  was 
investigated. Successively, NDVI and NDVI difference (October minus September) images 
were generated and the correspondent uncertainty estimated.

Test area
A circular test site of about 2,000 km2 (Fig. 1) having a radius of 25 km and centered 
on UTM 32 WGS84 coordinates 394248 E, 4947222 N was selected. This part of Italy 
(Piedmont Region, NW Italy) is typically characterized by a continental climate. Alpine 
reliefs separate this area from the Mediterranean Sea, thus determining different local 
climatic conditions, with special regard on temperature trends, sun radiation and wind. The 
area is flat and the Langhe hill system characterizes its eastern part, while Alps limit the south 
western part. Agricultural and livestock activities are the major economic activities in the 
area (Fig. 2). Forests are marginal and, mainly, located in mountainous areas. Landscape is 
highly fragmented. Main patches are maize crops, fruit orchards and vineyards. The above 
mentioned land use statistics were derived from the Land-use/Land-cover map (LULC) 
available for this study (see “Available Data”).

Figure 1 - (Left) Hillshade map of the test area calculated on DEM obtained from the Piedmont 
Region cartographic office. (Upper center) Area location within Piedmont Region (NW Italy). 
(Right) Typical agricultural landscape patterns of the area (from Google Earth).
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Langhe hill system has recently been included in the UNESCO heritage (whc.unesco.org/
en/list/). This kind of landscape is quite challenging for OLI sensor since its geometric 
resolution (30 m) is not exactly proper for the mean size of local patches (about 3 ha), 
determining a huge number of mixed pixels.
The choice of processing an image subset including hilly and mountainous areas was 
mandatory to emphasize the effect of terrain topography over final σσ ρρ  and σσ NDVI .

Figure 2 - Test area characteristics: (left) area percentages of main land use classes (IPLA 
S.p.A.). (Right) height classes distribution (m above sea level) calculated on DEM obtained 
from the Piedmont Region cartographic office.

Available Data
Two OLI Landsat 8 Level 1 data products were obtained for free from EarthExplorer 
distribution system [earthexplorer.usgs.gov]. Technical features of images are reported in 
Table 1.

Table 1 - Metadata of Landsat 8 OLI images used in this work. 

September 12th, 2014 October 23rd, 2014

Scene ID LC81950292014255LGN00 LC81940292014296LGN00

Date 12/09/2014 23/10/2014

Time 10:17:27.0911536 10:11:20.9752253

Sun elevation 
angle 46.77204921 32.54716480

Sun azimuth 153.55852655 162.72172168

Path 195 194

Row 29 29

Landsat 8 OLI sensor has a mean geometrical resolution of 30 meters for visible-infrared 
bands (bands 1-7, 9), 15 meters for the panchromatic one (band 8) and 100 meters for the 
thermal ones (bands 10-11 ). Panchromatic (PAN, 0.50 - 0.68 µm), cirrus (1.36 - 1.38 µm) 

http://whc.unesco.org/en/list
http://whc.unesco.org/en/list
http://earthexplorer.usgs.gov/
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and thermal bands (TIRS1, 10.60 - 11.19 µm; TIRS2, 11.50 - 12.51 µm) were not considered 
for this study. Radiometric resolution is 12-bits (rescaled to 16-bits when processed into 
Level-1 data products) [U.S. Geological Survey, 2015].
DEM (Digital Elevation Model) required by RTM to accomplish image topographic 
correction was freely obtained from the Piedmont Region cartographic office (http://
www.geoportale.piemonte.it/geocatalogorp/?sezione=catalogo). The original geometrical 
resolution is 50 m, height accuracy is 2.5 m [Borgogno-Mondino et al., 2004] and the 
reference system is WGS84 UTM 32N. For this work, the original data was oversampled to 
30 m resolution and aligned to L8 OLI images. Moreover, with the aim of minimizing local 
anomalies, responsible of some artifacts in the calibrated images, the DEM was filtered (low 
pass, 3x3 kernel). We assumed that these operations did not change DEM height accuracy.
The available LULC vector map (1:25000 scale) was used to explore if and how cover 
type conditions σσ ∆ NDVI

. LULC was freely available from the online database of the 
Piedmont Region (http://www.geoportale.piemonte.it/geocatalogorp/?sezione=catalogo) 
and supplied in the WGS84 UTM 32N reference system. Produced by IPLA (Institute for 
trees, wood, and environment S.p.A.) and co-founded by European Union, LULC is aimed 
at supporting studies for the territorial forest planning.

Methods
For a great number of applications there is no possibility to obtain low cost validations 
concerning index maps (e.g. NDVI) they are based on. Traditional validation in fact relies 
on the comparison between a reference dataset and estimations given by a model. This 
approach is also called “a-posteriori” variance estimation. The critical point is that, to 
obtain a reference dataset (test set) concerning NDVI (or simply at-the-ground reflectance) 
a ground survey has to be done. And, even if for ongoing acquisition this is possible (but 
expensive), for those applications relying on archive images and past datasets this cannot 
be done anymore. The only alternative is to focus on potential uncertainty that could 
affect the final product. This is referred to as “a-priori” variance [Brinker and Minnick, 
1995]. The approach that ordinary statistics provides to face the problem is the VPL. It 
permits to estimate the effect of variance (ordinarily assumed as indicator of precision) 
of direct measurements (radiance, terrain topography, atmospheric scattering, atmospheric 
transmission, sun irradiance, etc.) over the one of indirect measurements (reflectances and 
indices) obtained by calculation. The starting point to successfully operate with VPL is 
to rigorously define the model formula it has to be applied to. While discussing about 
spectral indices and their application in a change detection context, the problem can be 
faced proceeding along three sequential steps. Firstly, we have to describe how uncertainty 
of factors participating to the image calibration model (i.e. the RTM) affects at-the-ground 
reflectance variance. Successively, at-the-ground reflectance variance has to be propagated 
along index calculation. Finally, if two NDVI images of different dates have to be compared 
by differencing, a further variance propagation must be taken into account; local index 
difference variance depends, in fact, on index variance at the two dates in that position. 
The local estimation of index difference uncertainty permits to separate significant from 
not-significant index variations (in time). The entire workflow chart is reported in Figure 3.

http://www.geoportale.piemonte.it/geocatalogorp/?sezione=catalogo
http://www.geoportale.piemonte.it/geocatalogorp/?sezione=catalogo
http://www.geoportale.piemonte.it/geocatalogorp/?sezione=catalogo
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Figure 3 - Workflow for NDVI uncertainty estimation by Variance Propagation Law.

Pre-processing
An open approach (fully controllable and accessible by user) for image calibration is 
mandatory to control variance propagation. Therefore, image calibration and atmospheric 
correction was achieved by the simplified RTM by Moran et al. [1992], based on a dark 
object subtraction (DOS) approach [Chavez, 1996]. According to Moran RTM at-the-
ground reflectance ρρ λλ( )  is given by Equation [1].
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http://semiautomaticclassificationmanual.readthedocs.org/en/latest/Landsat_conversion.html
http://semiautomaticclassificationmanual.readthedocs.org/en/latest/Landsat_conversion.html
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reflectance value. Both values were obtained from L8 OLI datasets metadata file (MTL). 
Sun incidence angle map was generated by Analytical Hillshading tool of SAGA GIS 2.1.4 
[Tarini et al., 2006] from the available DEM. For this work ττ λλ  was considered constant 
over the scene, equal for both images and just band dependent (Tab. 2). It was given for a 
reference summertime mid-latitude low-hazy atmosphere (20 km visibility) according to 
Fenn et al. [1985].

Table 2 - Atmospheric transmittance values given 
for a reference summertime mid-latitude low-hazy 
atmosphere.

L8 OLI band n. Atmospheric transmittance

1 0.50
2 0.60
3 0.65
4 0.65
5 0.80
6 0.89
7 0.92

During these operations the contribution given by each RTM factor to reflectance 
uncertainty σσ ρρ( )  was estimated together with σσ ρρ  (see section “Pre-processing inputs and 
σσ ρρ  estimation”).

RTM sensitivity analysis: variance propagation law
VPL (Eq. [3]) is a statistical sensitivity analysis technique that generates estimates of 
a-priori variance for a statistical variable (y) depending on some other independent ones 
(xi).
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variance (supposed to be known). It is worth to remind that standard deviation (squared 
root of variance) of errors can be interpreted as precision of a measure. VPL requires that 
partial derivatives of ρ respect to each RTM factor (independent variables) are calculated 
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VPL was applied to Equation [1] under the following hypotheses:
a)	 all independent variables are not correlated to each other;
b)	 five independent variables conditioning uncertainty of at-the-ground reflectance 

are considered: L x y x y IL
atm

λλ λλ λλ λλττ ββ, , ,, , .( ) ( )
∧

Once VPL is formalized, the variance of involved RTM factors must be known, supposed 
or somehow derived.

Pre-processing inputs and �σσ ρρ  estimation
RTM and VPL analysis require that some inputs are supplied. Some of them can be deduced 
from imagery metadata (e.g. sun elevation and azimuth angles, image gain and offset value, 
sun irradiance, image radiometric resolution) or from auxiliary data (sun incidence angle 
image, DEM and DEM height accuracy). Some others are strictly dependent on model itself 
that has in charge their estimation (e.g. �σσ ββ ). Some are constant, others band dependent, 
space dependent or both. In Table 3 authors have summarized specifications of factors’ 
variances involved in VPL analysis.

Table 3 - Formulas used to estimate standard deviation of factors involved in VPL analysis.
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Standard deviation values of Table 3, once propagated by VPL, contribute differently to 
final reflectance variance. We measured and mapped the relative weight (importance) of 
each RTM factor variance σσ i

2( )  on reflectance variance �σσ ρρ  (Tab. 4). Since RTM factor 
variance weight is local (different at each position), in Table 8 we reported the mean value 
of weights for each band. We separated vegetated from not-vegetated pixels by thresholding 
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NDVI images at 0.5. We appositely used this value to ensures that vegetated pixels were 
sufficiently pure. In fact in literature NDVI values under 0.5 are generally related to partially 
vegetated pixels [Momeni and Saradjian, 2006].

Table 4 - Contribution given by variance (σ2) of each RTM factor to the total reflectance variance.
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NDVI and NDVI difference variance estimation
NDVI and NDVI difference uncertainty were finally estimated. As far as NDVI is concerned 
the formula is the canonic one given by Rouse et al. [1974] [5]:
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where ρρ NIR x y,( )  and ρρ RED x y,( )  are respectively the at-the-ground reflectance in the NIR and 
RED bands (5 and 4 for L8 OLI images). Partial derivatives were calculated assuming that 
ρρ NIR x y,( )  and ρρ RED x y,( )  are uncorrelated and independent statistical variables. σσ NDVI x y,( )  
estimation is given by Equation [6].
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2 ( , )  and σσ ρρRED x y2 ,( )  were obtained at the previous step. They represent local 

variance of reflectance in RED and NIR bands.
Successively NDVI difference, ∆ NDVI x y,( ) , was computed by Equation [7] and its 
uncertainty, σσ ∆ NDVI

x y( , ) , estimated by Equation [8]. Finally significant NDVI differences 
were mapped and statistically summarized using two different thresholds (1σ and 2σ), 
using Equation [9]. Statistics are given for main LULC classes.
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SD x y x y x yNDVI NDVI
( , ) ( , ) ( , )= > [ ]∆ ∆σ 9

Image pre-processing, VPL analysis and σσ NDVI  and σ ∆ NDVI  estimation were implemented 
by the research group in the IDL (Interactive Data Language, ITT Visual Information 
Solutions) 8.0.1 programming language.

Results and discussion
VPL inputs and σσ ρρ  estimation
At-the-sensor-radiance images were obtained applying gain and offset values contained in 
metadata provided with L8 OLI images (Tab. 5).

Table 5 - Gain and offset as reported in the metadata files of images used for this study.

L8 OLI band n.
September 12th, 2014 October 23rd, 2014
Gain Offset Gain Offset

1 0.012396 -61.97885 0.012683 -63.41270
2 0.012693 -63.46710 0.012987 -64.93538
3 0.011697 -58.48439 0.011967 -59.83740
4 0.009864 -49.31733 0.010092 -50.45827
5 0.006036 -30.17975 0.006176 -30.87794
6 0.001501 -7.50543 0.001536 -7.67906
7 0.000506 -2.52973 0.000518 -2.58826

Sun irradiances were calculated using Equation [2]. Radiance maximum, reflectance 
maximum and Earth-Sun distance coefficents (d) were obtained from image metadata. 
Values are reported in Table 6.

Table 6 - Sun irradiance values and metadata parameters used for its calculation.

L8 OLI 
band n.

Wavelength 
[µm]

Sun Irradiance 
[W·m-2·µm-1]

Max Radiance (Sept) 
[W·sr-1·m-2·μm-1]

Max Radiance (Oct) 
[W·sr-1·m-2·μm-1]

L8 OLI
Max reflectance

1 0.435–0.451 1972.2530 750.3780 767.7376 1.2107

2 0.452–0.512 2019.6110 768.3962 786.1727 1.2107

3 0.533–0.590 1861.0550 708.0705 724.4514 1.2107

4 0.636–0.673 1569.3460 597.0850 610.8983 1.2107

5 0.851–0.879 960.3620 365.3862 373.8393 1.2107

6 1.566–1.651 238.8330 90.8682 92.9704 1.2107

7 2.107–2.294 80.5000 30.6274 31.3360 1.2107

dSept = 1.0064325 dOct = 0.9949890
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Atmospheric scattered radiance was estimated for each band based on DOS approach, while 
transmittance was assumed constant over the scene and different for each band (see Tab. 
2). During radiometric calibration reflectance variance was estimated too by VPL analysis. 
Standard deviation values supplied or calculated for all factors are reported in Table 7.

Table 7 - Standard deviation values of factors involved in VPL analysis. For those depending on 
position, only minimum and maximum value are reported.

September 12th, 2014 b1 b2 b3 b4 b5 b6 b7

At-sensor radiance [W·sr-1·m-2·μm-1] 0.1984 0.2031 0.1872 0.1579 0.0966 0.0240 0.0081

Atmospheric scattering σσ
λλ

λλ
L

atm atmL∧ = ⋅










∧

0 05.

              [W·sr-1·m-2·μm-1]
0.7935 0.8125 0.4279 0.6314 0.2247 0.0555 0.0186

Atmospheric transmittance σσ ττττ λλλλ
= ⋅( )0 05. 0.025 0.030 0.033 0.033 0.040 0.045 0.046

Sun irradiance [W·m-2·μm-1]                  0.0500         fixed (user instrument/source dependent)

Sun incidence angle [rad]    (grid)
(max)                             0.0589             fixed (DEM dependent)

(min)                             0.0319             fixed (DEM dependent)

October 23rd, 2014 b1 b2 b3 b4 b5 b6 b7

At-sensor radiance [W·sr-1·m-2·μm-1] 0.2030 0.2078 0.1915 0.1615 0.0988 0.0246 0.0083

Atmospheric scattering [W·sr-1·m-2·μm-1] 0.3169 0.0954 0.2386 0.6460 0.2242 0.0572 0.0129

Atmospheric transmittance 0.025 0.030 0.033 0.033 0.040 0.045 0.046

Sun Irradiance [W·m-2·μm-1]                           0.0500         fixed (instrument dependent)

Sun incidence angle [rad]    (grid)
(max)                                0.0589             fixed (DEM dependent)

(min)                                0.0319             fixed (DEM dependent)

During tests standard deviation of sun irradiance was set to 0.05 W.m-2.µm-1, while σσ ττ λλ  and 
σσ

λλL

atm
∧  were assumed equal to the 5% of the correspondent ττ λλ  and L

atm∧
λλ  values.

Many tests performed by varying σσ I  in the range [0.05-10.00] demonstrated that no 
significant contribution is given by this term to reflectance variance; in fact maximum 
difference recorded for σσ ρρλλ  was about 0.0001. Sun incidence angle variance (Tab. 3) was 
calculated according to the available DEM having a cell size of 30 m and σσ DEM  = 2.5 m. 
The same values were considered along all computations. Table 8 shows that, averagely, 
topography is the most influencing factor of reflectance uncertainty, due to its heavy impact 
over sun incidence angle calculation. This is the dominant source of error for infrared bands, 
while for the visible ones significant contribution also comes from atmospheric scattering 
σσ

λλL

atm
∧









  and radiance σσ

λλL( )  factors. For band 1 the prevailing factor is scattering for vegetated 
areas, while sun incidence angle effect prevails in not-vegetated ones. Transmittance and 
sun irradiance appear to be always negligible.
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Table 8. Contribution given by each factor to reflectance variance. Values are expressed in 
percentage and statistics are given separately for permanently vegetated areas (at the two dates) 
and for not-vegetated ones. (**) are maximum values, (*) is other significant contributions.

Mean class value Factor b1 b2 b3 b4 b5 b6 b7

Sept

Vegetated

At-sensor 
radiance 3.78 2.36 1.66 1.72 0.072 0.34 1.31

Scattering 64.24** 41.33* 9.75* 30.22* 0.64 2.24 7.83*

Sun incidence 
angle 29.85* 53.54** 87.40** 65.84** 98.21** 96.40** 89.74**

Transmittance 2.13 2.77 1.18 2.22 1.08 1.02 1.11

Sun 
Irradiance ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 0.01

Not 
Vegetated

At-sensor 
radiance 2.15 1.20 0.81 0.56 0.16 0.34 0.63

Scattering 37.97* 22.07* 5.00 10.66* 1.21 2.17 3.82

Sun incidence 
angle 55.90** 72.97** 92.95** 85.92** 97.58** 96.48** 94.39**

Transmittance 3.99 3.76 1.24 2.87 1.05 1.00 1.15

Sun 
Irradiance ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 0.01

Oct

Vegetated

At-sensor 
radiance 24.74* 21.28* 3.04 2.05 0.05 0.14 0.54

Scattering 60.85** 4.60 5.08* 35.09* 0.44 1.04 1.56

Sun incidence 
angle 14.34* 74.10** 91.73** 62.00** 99.10** 98.41** 97.69**

Transmittance 0.06 0.02 0.15 0.86 0.41 0.41 0.20

Sun 
Irradiance ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 0.01

Not 
Vegetated

At-sensor 
radiance 7.47* 3.26 0.95 0.45 0.13 0.11 0.19

Scattering 19.11* 0.74 1.69 8.63* 0.91 0.84 0.59

Sun incidence 
angle 73.10** 95.96** 97.20** 89.68** 98.56** 98.65** 99.01**

Transmittance 0.32 0.03 0.16 1.23 0.40 0.40 0.21

Sun 
Irradiance ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 ~ 0.00 0.01

In spite of these general considerations, weights are however varying over the scene, 
determining specific local relative influences that, sometimes, can be surprisingly different 
from the average behavior.
Relative weights of factors’ variance are useful to understand which of them mainly 
contributes to degrade the quality of reflectance calculations; nevertheless they do not 
inform about the amount of final potential error affecting at-the-ground reflectance. For this 
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purpose we calculated for each L8 OLI band the median value (over the scene) of σσ ρρλλ  and 
reported it in the graphs of Figure 4 for both considered dates.

Figure 4 - σσ ρρλλ  (scene median value) versus L8 OLI bands for September (left) and October 
(centre) image; trends are consistent with spectrum of the prevalent class in image (vegetation in 
September, bare soil in October). Error bars refer to 1st and 4th quartiles. (Right image) Linear 
regression relating reflectance and its standard deviation (median values) for each band.

Trends of Figure 4 (right) clearly shows how σσ ρρλλ  strictly depends linearly on reflectance. 
This determines that reflectance uncertainty profile well correlates with spectral signature 
demonstrating that local variance depends on surface type. A further demonstration 
comes from left and central images of Figure 4, where σσ ρρλλ  trends are similar to the ones 
expected for the spectrum of the prevailing class (in terms of m2) over image: vegetation 
in September, bare soil in October (when maize crops have been harvested). Furthermore 
it can be observed that distribution of σσ ρρλλ  around its median value is quite symmetric and 
generally increases while signal increases. Moreover σσ ρρλλ  appears to change with season. In 
fact when sun is lower over the horizon (about 32° in October and about 47° in September) 
σσ ρρλλ  is higher (right image of Fig. 4) demonstrating, once more, the importance of sun 
incidence angle in determining reliable ρρ λλ   measurement.
Successively, we focused on the relationship between NDVI (x,y) and σσ NDVI x y( , )�  images, 
finding that a strong correlation exists (Fig. 5). Particularly, the higher is NDVI value, the 
lower is its uncertainty. It can also be noticed that the majority of pixels in September are 
vegetated (highest frequencies are in the NDVI range [0.6-0.9]), while in October they are 
not vegetated anymore (highest frequencies are in the NDVI range [0.2-0.4]). This depends 
on maize crop harvest that took place in the transitional period. Where highest frequencies 
occur the Noise-to-Signal ratio σσ NDVI NDVI/( )  is about 0.210 in October and 0.027 in 
September that is almost 10 times less. It means that scientific applications adopting 
NDVI as indicator of something different from vegetation, or for vegetation studies in 
extreme situations where plants are sparse or weakly active, have to carefully consider 
uncertainty to get their final conclusions. On the contrary, focusing on areas with active 
vegetation (NDVI = 0.7-0.9), almost the same uncertainty value (about 0.02) is maintained 
independently from other conditions, suggesting that strength of signal minimizes effects 
of any contribution to index variance.
In terms of absolute value of σσ NDVI  it can be noticed that it reaches the highest values 
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(about 0.07) in October, when degradation effects of sun elevation angle over reflectance 
(and consequently over NDVI) are stronger. In September values are lower (up to 0.045) 
even for not vegetated pixels (lowest values of NDVI).

Figure 5 - Scatterplot relating NDVI and NDVI uncertainty σσ NDVI( ) in September and October 
2014. Right sided grayscale bar reports frequency (number of pixels). 

Successively, we computed NDVI difference image ∆ NDVI x y( , )( ) , October minus September 
2014 (Fig. 6 - left). Correspondent uncertainty, σσ ∆ NDVI

x y( , )  image (Fig. 6 - right), was also 
calculated applying VPL to the difference formula ([7] and [8]). A correlation analysis was 
performed to investigate relationship between σσ ∆ NDVI

x y( , )  and ∆ NDVI x y,( ) . No correlation 
was found. In Figure 6 (lower right) it can be noticed that σσ ∆ NDVI

 values are not negligible 
at all, since about 50 % of pixels present a NDVI difference uncertainty in the range [0.06 
- 0.08]. If compared with the range of variability of NDVI difference itself (Fig. 6 – lower 
left) it can be summarized that, averagely, the noise of measure is about 15% of signal.
In order to stress practical effects of such approach we, finally, used the previously 
generated information to map significant and not-significant NDVI changes occurred in the 
observation period in the study area. We assumed that σσ ∆ NDVI  represented the sensibility for 
appreciating local index changes. NDVI difference values lower than an arbitrary multiple 
(generally 1 or 2) of the local σσ ∆ NDVI

x y( , )  were labeled as not-significant, stating that, at 
that position, nothing really changed. Results are given for both 1σσ ∆NDVI  and 2σσ ∆NDVI  
considering different LULC classes (Tab. 9), to emphasize once more, that surface type 
conditions accuracy of NDVI measurement.
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Figure 6 - (Upper left): a sample subset of ∆ NDVI x y,( ) . (Lower left): cumulative frequency 
function of ∆ NDVI x y,( )  for the whole area. (Upper right): sample subset of σσ ∆ NDVI

x y( , ) . 
(Lower right): cumulative frequency function of σσ ∆ NDVI

x y( , )  for the test area.

Table 9. Percentages of NDVI significant differences in the period October-September 2014 
calculated for different LULC classes. 

σσ ∆ NDVI
x y( , )

 
2σσ ∆ NDVI

x y( , )

Significant [%] Not significant [%] Significant [%] Not significant [%]

Urban 34.5 65.5 14.1 85.9

Arable 84.8 15.2 72.0 28.0

Orchard, Vineyard 66.4 33.6 42.4 57.6

Meadows 83.6 16.4 68.9 31.1

Forest 50.4 49.6 30.0 70.0

Other classes 43.6 56.4 19.3 80.7

Total 73.7 26.3 57.8 42.2
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Table 9 shows that the total area significantly changed between September and October 2014, 
is about 74 % for 1σσ ∆NDVI  threshold and only about 58% for 2σσ ∆NDVI . Majority of changes 
are related to maize crops harvest that occurred in the reference period. Significant NDVI 
differences are, in fact, mostly located over harvested/agricultural areas where percentage of 
changes reaches 84.8% and 72.0% respectively for 1σσ ∆NDVI  and 2σσ ∆NDVI . Unchanged (or 
not-significantly changed) areas represent the 26.3% and 42.2% of the whole, respectively 
for 1 and 2σσ ∆NDVI   thresholds.
Urban and forested areas are the ones where unchanged pixels represent the highest 
percentage (between about 65% and 86 % for urban and between 50% and 70% for forest 
respectively for 1σσ ∆NDVI  and 2σσ ∆NDVI ) confirming that our method correctly detect 
invariant surfaces. Significantly changed areas of these classes can be related to “mixed” 
pixels or to effectively changing small sized surfaces of other classes that were included 
in the polygons of the biggest one surrounding them in the LULC vector map, during 
classification simplification step.

Conclusions
In this work we focused on the importance of estimating uncertainty related to spectral 
measurements from L8 OLI images. We have proposed an operational “a-priori” approach 
that can be used in many applications related to spectral index calculation, able to easily 
estimate variance of at-the-ground calibrated reflectances and, consequently, of the index 
itself. The method relies on the Variance Propagation Law and requires that an “open” RTM 
is used during image calibration. For this study the simplified “open” RTM by Moran et al. 
[1992] was implemented in an IDL environment. The use of a completely accessible and 
controllable RTM allowed to investigate contribution of every considered physical factor 
to reflectance, NDVI and NDVI difference variance.
Results demonstrate that the most influencing factor for reflectance variance is sun 
incidence angle. Its effects over reflectance variance are strictly related to accuracy of 
DEM used for topographic correction. The higher is DEM accuracy, the lower is at-the-
ground reflectance uncertainty. Therefore, since morphological factor proved to be decisive 
on final data quality, it cannot be neglected in computation, also when reflectances are 
aggregated for index calculation. It is commonly retained that the use of indexes built 
in shape of ratios can minimize or completely remove the “variable illumination effects 
in areas of topographic slope” [Mather, 2005]. In particular this conviction comes from 
a mathematical consideration concerning [1] where the sine factor that participates to 
reflectance computation can be mathematically simplified. This assumption is true just 
if the TOA (Top-of-Atmosphere) reflectance is calculated; on the contrary it is false if a 
more complete RTM is used. Specifically the additive scattering term in denominator of [1] 
excludes this possibility: topographic term has therefore to be considered and, consequently, 
it conditions σσ ρρλλ . Among other factors just those related to atmospheric scattering and 
to at-the-sensor radiance contribute significantly to σσ ρρλλ , especially for visible bands. In 
particular atmospheric scattering influence is comparable to the one of sun incidence angle 
for bands 1 and 2, especially for vegetated surfaces. Contribution of transmittance and sun 
irradiance variance to σσ ρρλλ  is always negligible. Moreover we showed that  is strongly 
correlated to at-the-ground reflectance and consequently that it depends on surface type 
and season (Fig. 4).
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As far as NDVI and NDVI difference is concerned, we found that σσ NDVI  strongly and 
inversely correlates with NDVI values (Fig. 5). No correlation instead was found between  
σ ∆ NDVI  and DNDVI value. The values that our method estimated for σσ NDVI  are consistent 
with the ones reported for other sensors [Nagol et al., 2009]. We also showed that  σσ NDVI  

and σ ∆ NDVI  can be effectively used to better interpret data. Specifically, significant NDVI 
differences can be recognized and separated from the ones due to intrinsic uncertainty of 
recording instrument or RTM. The proposed case study confirmed this potentiality. In fact 
the highest percentage of significant NDVI changes occurring in the reference period were 
found for seasonally changing LULC classes (harvested areas); on the contrary the lowest 
percentage of NDVI changes were found for the expected unchanging classes (urban, bare 
soils, forest, water, etc.).
Authors retain that this approach can effectively be applied to all spectral indexes and 
sensors, helping to improve reliability of many results concerning change detection and 
spectral index mapping.
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