11 research outputs found

    Iron-Stimulated N(2) Fixation and Growth in Natural and Cultured Populations of the Planktonic Marine Cyanobacteria Trichodesmium spp

    Get PDF
    In light of recent proposals that iron (Fe) availability may play an important role in controlling oceanic primary production and nutrient flux, its regulatory impact on N(2) fixation and production dynamics was investigated in the widespread and biogeochemically important diazotrophic, planktonic cyanobacteria Trichodesmium spp. Fe additions, as FeCl(3) and EDTA-chelated FeCl(3), enhanced N(2) fixation (nitrogenase activity), photosynthesis (CO(2) fixation), and growth (chlorophyll a production) in both naturally occurring and cultured (on unenriched oligotrophic seawater) Trichodesmium populations. Maximum enhancement of these processes occurred under FeEDTA-amended conditions. On occasions, EDTA alone led to enhancement. No evidence for previously proposed molybdenum or phosphorus limitation was found. Our findings geographically extend support for Fe limitation of N(2) fixation and primary production to tropical and subtropical oligotrophic ocean waters often characterized by Trichodesmium blooms

    Diel Interactions of Oxygenic Photosynthesis and N(2) Fixation (Acetylene Reduction) in a Marine Microbial Mat Community

    Get PDF
    Diel variations in N(2) fixation (acetylene reduction), CO(2) fixation, and oxygen concentrations were measured, on three separate occasions, in a marine microbial mat located on Shackleford Banks, North Carolina. Nitrogenase activity (NA) was found to be inversely correlated with CO(2) fixation and, in two of the three diel periods studied, was higher at night than during the day. Oxygen concentrations within the top 3 mm of the mat ranged from 0 to 400 μM on a diel cycle; anaerobic conditions generally persisted below 4 mm. NA in the mat was profoundly affected by naturally occurring oxygen concentrations. Experimentally elevated oxygen concentrations resulted in a significant depression of NA, whereas the addition of the Photosystem II inhibitor 3(3,4-dichlorophenyl)-1,1-dimethylurea decreased oxygen concentrations within the mat and resulted in a significant short-term enhancement of NA. Mat N(2)-fixing microorganisms include cyanobacteria and heterotrophic, photoautotrophic, and chemolithotrophic eubacteria. Measured (whole-mat) NA is probably due to a combination of the NA of each of these groups of organisms. The relative contributions of each group to whole-mat NA probably varied during diel and seasonal (successional) cycles. Reduced compounds derived from photosynthetic CO(2) fixation appeared to be an important source of energy for NA during the day, whereas heterotrophic or chemolithotrophic utilization of reduced compounds appeared to be an important source of energy for NA at night, under reduced ambient oxygen concentrations. Previous estimates of N(2) fixation calculated on the basis of daytime measurements may have seriously underestimated diel and seasonal nitrogen inputs in mat systems

    The Molecular Ecology of Guerrero Negro: Justifying the Need for Environmental Genomics

    No full text
    The record of life on the only planet where it is known to exist is contained in the biogeochemical processes that organisms catalyze for their survival, in the compounds that they produce, and in their phylogenetic (evolutionary) relationships to each other. We manipulated sulfate and nutrient concentrations in intact microbial mats over periods of time up to a year. The objectives of the manipulations were: 1) characterize the diversity of process-associated functional genes; 2) understand environmental conditions leading to shifts in microbial guilds; 3) monitor/identify competitive responses of organisms sharing a metabolic niche. Characterization of functional genes associated with carbon (mcrA), nitrogen (nifH, nirK) and sulfur (dsrkB) cycling performed to date provided insight into the diversity and metabolic potential of the system; however, we only identified broad scale correlations between gene abundances and changes in mat physiology. For instance, increases in methane production by mats subjected to lowered sulfate and salinity concentrations were correlated with an observed increase in abundance of hydrogenotroph-like mcrA genes. However, due to low sequence similarity to any cultured isolates, phylogenetic associations only allow order level taxonomic commentary, preventing any associations being made on the cellular level. In each of the genes characterized from these experiments, a significant portion of sequences recovered show minimal phylogenetic affiliation to cultured organisms, preventing any understanding of inter-community dynamics and the functional capacities of these unknown organisms. Environmental genomics may provide insight into mat systems by allowing the correlation of functional genes with phylogenetic markers

    Metagenomics reveals niche partitioning within the phototrophic zone of a microbial mat.

    No full text
    Hypersaline photosynthetic microbial mats are stratified microbial communities known for their taxonomic and metabolic diversity and strong light-driven day-night environmental gradients. In this study of the upper photosynthetic zone of hypersaline microbial mats of Elkhorn Slough, California (USA), we show how metagenome sequencing can be used to meaningfully assess microbial ecology and genetic partitioning in these complex microbial systems. Mapping of metagenome reads to the dominant Cyanobacteria observed in the system, Coleofasciculus (Microcoleus) chthonoplastes, was used to examine strain variants within these metagenomes. Highly conserved gene subsystems indicated a core genome for the species, and a number of variant genes and subsystems suggested strain level differentiation, especially for nutrient utilization and stress response. Metagenome sequence coverage binning was used to assess ecosystem partitioning of remaining microbes to both reconstruct the model organisms in silico and identify their ecosystem functions as well as to identify novel clades and propose their role in the biogeochemical cycling of mats. Functional gene annotation of these bins (primarily of Proteobacteria, Bacteroidetes, and Cyanobacteria) recapitulated the known biogeochemical functions in microbial mats using a genetic basis, and revealed significant diversity in the Bacteroidetes, presumably in heterotrophic cycling. This analysis also revealed evidence of putative phototrophs within the Gemmatimonadetes and Gammaproteobacteria residing in microbial mats. This study shows that metagenomic analysis can produce insights into the systems biology of microbial ecosystems from a genetic perspective and to suggest further studies of novel microbes

    Long Term Manipulations of Intact Microbial Mat Communities in a Greenhouse Collaboratory: Simulating Earth's Present and Past Field Environments

    No full text
    Photosynthetic microbial mat communities were obtained from marine hypersaline saltern ponds, maintained in a greenhouse facility, and examined for the effects of salinity variations. Because these microbial mats are considered to be useful analogs of equivalent ancient marine communities, they offer insights about evolutionary events during the greater than 3 billion year time interval wherein mats co-evolved with Earth's geosphere and atmosphere. Although photosynthetic mats can be highly dynamic and exhibit extremely high activity, the mats in the present study have been maintained for more than one year with relatively minor changes. The major groups of microorganisms, as assayed using microscopic, genetic, and biomarker methodologies, are essentially the same as those in the original field samples. Field and greenhouse mats were similar with respect to rates of exchange of oxygen and dissolved inorganic carbon across the mat-water interface, both during the day and at night. Field and greenhouse mats exhibited similar rates of efflux of methane and hydrogen. Manipulations of salinity in the water overlying the mats produced changes in the community that strongly resemble those observed in the field. A collaboratory testbed and an array of automated features are being developed to support remote scientific experimentation with the assistance of intelligent software agents. This facility will permit teams of investigators to explore ancient environmental conditions that are rare or absent today but might have influenced the early evolution of these photosynthetic ecosystems

    Metagenomic analysis of intertidal hypersaline microbial mats from Elkhorn Slough, California, grown with and without molybdate

    No full text
    Abstract Cyanobacterial mats are laminated microbial ecosystems which occur in highly diverse environments and which may provide a possible model for early life on Earth. Their ability to produce hydrogen also makes them of interest from a biotechnological and bioenergy perspective. Samples of an intertidal microbial mat from the Elkhorn Slough estuary in Monterey Bay, California, were transplanted to a greenhouse at NASA Ames Research Center to study a 24-h diel cycle, in the presence or absence of molybdate (which inhibits biohydrogen consumption by sulfate reducers). Here, we present metagenomic analyses of four samples that will be used as references for future metatranscriptomic analyses of this diel time series
    corecore