935 research outputs found
Combinatorial Hopf algebras in quantum field theory I
This manuscript stands at the interface between combinatorial Hopf algebra
theory and renormalization theory. Its plan is as follows: Section 1 is the
introduction, and contains as well an elementary invitation to the subject. The
rest of part I, comprising Sections 2-6, is devoted to the basics of Hopf
algebra theory and examples, in ascending level of complexity. Part II turns
around the all-important Faa di Bruno Hopf algebra. Section 7 contains a first,
direct approach to it. Section 8 gives applications of the Faa di Bruno algebra
to quantum field theory and Lagrange reversion. Section 9 rederives the related
Connes-Moscovici algebras. In Part III we turn to the Connes-Kreimer Hopf
algebras of Feynman graphs and, more generally, to incidence bialgebras. In
Section10 we describe the first. Then in Section11 we give a simple derivation
of (the properly combinatorial part of) Zimmermann's cancellation-free method,
in its original diagrammatic form. In Section 12 general incidence algebras are
introduced, and the Faa di Bruno bialgebras are described as incidence
bialgebras. In Section 13, deeper lore on Rota's incidence algebras allows us
to reinterpret Connes-Kreimer algebras in terms of distributive lattices. Next,
the general algebraic-combinatorial proof of the cancellation-free formula for
antipodes is ascertained; this is the heart of the paper. The structure results
for commutative Hopf algebras are found in Sections 14 and 15. An outlook
section very briefly reviews the coalgebraic aspects of quantization and the
Rota-Baxter map in renormalization.Comment: 94 pages, LaTeX figures, precisions made, typos corrected, more
references adde
Unveiling the Circumstellar Envelope and Disk: A Sub-Arcsecond Survey of Circumstellar Structures
We present the results of a 2.7 mm continuum interferometric survey of 24
young stellar objects in 11 fields. The target objects range from deeply
embedded Class 0 sources to optical T Tauri sources. This is the first
sub-arcsecond survey of the 2.7 mm dust continuum emission from young, embedded
stellar systems. The images show a diversity of structure and complexity. The
optically visible T Tauri stars (DG Tauri, HL Tauri, GG Tauri,and GM Aurigae)
have continuum emission dominated by compact, less than 1", circumstellar
disks. The more embedded near-infrared sources (SVS13 and L1551 IRS5) have
continuum emission that is extended and compact. The embedded sources (L1448
IRS3, NGC1333 IRAS2, NGC1333 IRAS4, VLA1623, and IRAS 16293-2422) have
continuum emission dominated by the extended envelope, typically more than 85%.
In fact, in many of the deeply embedded systems it is difficult to uniquely
isolate the disk emission component from the envelope extending inward to AU
size scales. All of the target embedded objects are in multiple systems with
separations on scales of 30" or less. Based on the system separation, we place
the objects into three categories: separate envelope (separation > 6500 AU),
common envelope (separation 150-3000 AU), and common disk (separation < 100
AU). These three groups can be linked with fragmentation events during the star
formation process: separate envelopes from prompt initial fragmentation and the
separate collapse of a loosely condensed cloud, common envelopes from
fragmentation of a moderately centrally condensed spherical system, and common
disk from fragmentation of a high angular momentum circumstellar disk.Comment: 47 Pages, 18 Figures, ApJ accepte
Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers (Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Monitorin
The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket
P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism
Left gaze bias in humans, rhesus monkeys and domestic dogs
While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance
A relocatable ocean model in support of environmental emergencies
During the Costa Concordia emergency case, regional, subregional, and relocatable ocean models have been used together with the oil spill model, MEDSLIK-II, to provide ocean currents forecasts, possible oil spill scenarios, and drifters trajectories simulations. The models results together with the evaluation of their performances are presented in this paper. In particular, we focused this work on the implementation of the Interactive Relocatable Nested Ocean Model (IRENOM), based on the Harvard Ocean Prediction System (HOPS), for the Costa Concordia emergency and on its validation using drifters released in the area of the accident. It is shown that thanks to the capability of improving easily and quickly its configuration, the IRENOM results are of greater accuracy than the results achieved using regional or subregional model products. The model topography, and to the initialization procedures, and the horizontal resolution are the key model settings to be configured. Furthermore, the IRENOM currents and the MEDSLIK-II simulated trajectories showed to be sensitive to the spatial resolution of the meteorological fields used, providing higher prediction skills with higher resolution wind forcing.MEDESS4MS Project; TESSA Project; MyOcean2 Projectinfo:eu-repo/semantics/publishedVersio
Clinical registry of dental outcomes in head and neck cancer patients (OraRad): rationale, methods, and recruitment considerations
Background Most head and neck (H&N) cancer patients receive high-dose external beam radiation therapy (RT), often in combination with surgery and/or chemotherapy. Unfortunately, high-dose RT has significant adverse effects on the oral and maxillofacial tissues, some of which persist for the life of the patient. However, dental management of these patients is based largely on individual and expert opinion, as few studies have followed patients prospectively to determine factors that predict adverse oral sequelae. In addition, many previous studies were conducted before wide-spread adoption of intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy. The objective of this multi-center study is to systematically evaluate the oral health of subjects for 2 years after commencement of RT, with the goal of identifying risk factors that predict adverse oral outcomes post-RT. Methods This is a prospective multi-center longitudinal cohort study of H&N cancer patients who receive high-dose RT with curative intent. Planned enrollment is 756 subjects at 6 primary clinical sites (and their affiliated sites) in the USA. A baseline visit is conducted prior to the beginning of RT. Follow-up visits are conducted at 6, 12, 18 and 24 months from the start of RT. The primary outcome measure is the 2-year rate of tooth loss in patients who have received at least one session of external beam RT for H&N cancer. Secondary outcome measures include the incidence of exposed intraoral bone; incidence of post-extraction complications; change in Decayed Missing and Filled Surfaces (DMFS); change in periodontal measures; change in stimulated whole salivary flow rates; change in mouth opening; topical fluoride utilization; chronic oral mucositis incidence; changes in RT-specific quality of life measures; and change in oral pain scores. Discussion This study will contribute to a better understanding of the dental complications experienced by these patients. It will also enable identification of risk factors associated with adverse outcomes such as tooth loss and osteoradionecrosis. These findings will support the development of evidence-based guidelines and inform the planning of future interventional studies, with the goal of advancing improvements in patient care and outcomes. Trial registration ClinicalTrials.gov Identifier NCT02057510 , registered 5 February 2014
Synthesis of an ordered mesoporous carbon with graphitic characteristics and its application for dye adsorption
An ordered mesoporous carbon (OMC) was prepared by a chemical vapor deposition technique using liquid petroleum gas (LPG) as the carbon source. During synthesis, LPG was effectively adsorbed in the ordered mesopores of SBA-15 silica and converted to a graphitic carbon at 800 °C. X-ray diffraction and nitrogen adsorption/desorption data and high-resolution transmission electron microscopy (HRTEM) of the OMC confirmed its ordered mesoporous structure. The OMC was utilized as an adsorbent in the removal of dyes from aqueous solution. A commercial powder activated carbon (AC) was also investigated to obtain comparative data. The efficiency of the OMC for dye adsorption was tested using acidic dye acid orange 8 (AO8) and basic dyes methylene blue (MB) and rhodamine B (RB). The results show that adsorption was affected by the molecular size of the dye, the textural properties of carbon adsorbent and surface-dye interactions. The adsorption capacities of the OMC for acid orange 8 (AO8), methylene blue (MB) and rhodamine B (RB) were determined to be 222, 833, and 233 mg/g, respectively. The adsorption capacities of the AC for AO8, MB, and RB were determined to be 141, 313, and 185 mg/ g, respectively. The OMC demonstrated to be an excellent adsorbent for the removal of MB from wastewater.Web of Scienc
Building multiclass classifiers for remote homology detection and fold recognition
BACKGROUND: Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve binary classification problems and they have not been extensively used to solve the more general multiclass remote homology prediction and fold recognition problems. RESULTS: We present a comprehensive evaluation of a number of methods for building SVM-based multiclass classification schemes in the context of the SCOP protein classification. These methods include schemes that directly build an SVM-based multiclass model, schemes that employ a second-level learning approach to combine the predictions generated by a set of binary SVM-based classifiers, and schemes that build and combine binary classifiers for various levels of the SCOP hierarchy beyond those defining the target classes. CONCLUSION: Analyzing the performance achieved by the different approaches on four different datasets we show that most of the proposed multiclass SVM-based classification approaches are quite effective in solving the remote homology prediction and fold recognition problems and that the schemes that use predictions from binary models constructed for ancestral categories within the SCOP hierarchy tend to not only lead to lower error rates but also reduce the number of errors in which a superfamily is assigned to an entirely different fold and a fold is predicted as being from a different SCOP class. Our results also show that the limited size of the training data makes it hard to learn complex second-level models, and that models of moderate complexity lead to consistently better results
Structural and Spectroscopic Analysis of the Kinase Inhibitor Bosutinib and an Isomer of Bosutinib Binding to the Abl Tyrosine Kinase Domain
Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor's activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name “bosutinib”, and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity
- …