23 research outputs found

    How release of phosphate from mammalian F1-ATPase generates a rotary substep.

    Get PDF
    The rotation of the central stalk of F1-ATPase is driven by energy derived from the sequential binding of an ATP molecule to its three catalytic sites and the release of the products of hydrolysis. In human F1-ATPase, each 360° rotation consists of three 120° steps composed of substeps of about 65°, 25°, and 30°, with intervening ATP binding, phosphate release, and catalytic dwells, respectively. The F1-ATPase inhibitor protein, IF1, halts the rotary cycle at the catalytic dwell. The human and bovine enzymes are essentially identical, and the structure of bovine F1-ATPase inhibited by IF1 represents the catalytic dwell state. Another structure, described here, of bovine F1-ATPase inhibited by an ATP analog and the phosphate analog, thiophosphate, represents the phosphate binding dwell. Thiophosphate is bound to a site in the α(E)β(E)-catalytic interface, whereas in F1-ATPase inhibited with IF1, the equivalent site is changed subtly and the enzyme is incapable of binding thiophosphate. These two structures provide a molecular mechanism of how phosphate release generates a rotary substep as follows. In the active enzyme, phosphate release from the β(E)-subunit is accompanied by a rearrangement of the structure of its binding site that prevents released phosphate from rebinding. The associated extrusion of a loop in the β(E)-subunit disrupts interactions in the α(E)β(E-)catalytic interface and opens it to its fullest extent. Other rearrangements disrupt interactions between the γ-subunit and the C-terminal domain of the α(E)-subunit. To restore most of these interactions, and to make compensatory new ones, the γ-subunit rotates through 25°-30°

    MicroED data collection and processing.

    Get PDF
    MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges

    Overview of the CCP4 suite and current developments.

    Get PDF
    The CCP4 (Collaborative Computational Project, Number 4) software suite is a collection of programs and associated data and software libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims. The programs are from a wide variety of sources but are connected by a common infrastructure provided by standard file formats, data objects and graphical interfaces. Structure solution by macromolecular crystallography is becoming increasingly automated and the CCP4 suite includes several automation pipelines. After giving a brief description of the evolution of CCP4 over the last 30 years, an overview of the current suite is given. While detailed descriptions are given in the accompanying articles, here it is shown how the individual programs contribute to a complete software package

    Benefits and harms of perioperative high fraction inspired oxygen for surgical site infection prevention: a protocol for a systematic review and meta-analysis of individual patient data of randomised controlled trials.

    Get PDF
    INTRODUCTION The use of high fraction of inspired oxygen (FiO2) intraoperatively for the prevention of surgical site infection (SSI) remains controversial. Promising results of early randomised controlled trials (RCT) have been replicated with varying success and subsequent meta-analysis are equivocal. Recent advancements in perioperative care, including the increased use of laparoscopic surgery and pneumoperitoneum and shifts in fluid and temperature management, can affect peripheral oxygen delivery and may explain the inconsistency in reproducibility. However, the published data provides insufficient detail on the participant level to test these hypotheses. The purpose of this individual participant data meta-analysis is to assess the described benefits and harms of intraoperative high FiO2compared with regular (0.21-0.40) FiO2 and its potential effect modifiers. METHODS AND ANALYSIS Two reviewers will search medical databases and online trial registries, including MEDLINE, Embase, CENTRAL, CINAHL, ClinicalTrials.gov and WHO regional databases, for randomised and quasi-RCT comparing the effect of intraoperative high FiO2 (0.60-1.00) to regular FiO2 (0.21-0.40) on SSI within 90 days after surgery in adult patients. Secondary outcome will be all-cause mortality within the longest available follow-up. Investigators of the identified trials will be invited to collaborate. Data will be analysed with the one-step approach using the generalised linear mixed model framework and the statistical model appropriate for the type of outcome being analysed (logistic and cox regression, respectively), with a random treatment effect term to account for the clustering of patients within studies. The bias will be assessed using the Cochrane risk-of-bias tool for randomised trials V.2 and the certainty of evidence using Grading of Recommendations, Assessment, Development and Evaluation methodology. Prespecified subgroup analyses include use of mechanical ventilation, nitrous oxide, preoperative antibiotic prophylaxis, temperature (2.5 hour). ETHICS AND DISSEMINATION Ethics approval is not required. Investigators will deidentify individual participant data before it is shared. The results will be submitted to a peer-review journal. PROSPERO REGISTRATION NUMBER CRD42018090261

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
    corecore