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Significance statement 

Last year, 1.6 million people died from tuberculosis (TB) and about 10 million became 

infected with the causative bacterium, Mycobacterium tuberculosis, 460,000 of them with 

multidrug resistant bacteria. Bedaquiline, a new anti-TB drug, developed to combat multi-

drug resistant TB, kills M. tuberculosis by preventing the operation of its molecular 

machine for generating adenosine triphosphate (ATP), the fuel of life, without affecting 

the equivalent human machine. Here, we describe the molecular structure of the module in 

the mycobacterial machine where ATP is generated. Differences between this module and 

the equivalent human module can now be exploited to develop new anti-TB drugs, 

unrelated to bedaquiline, that also may help to prevent and cure TB by inhibiting the 

formation of ATP. 

[118 words] 

Summary 

The crystal structure has been determined of the F1-catalytic domain of the ATP synthase 

from Mycobacterium smegmatis which hydrolyzes adenosine triphosphate (ATP) very 

poorly. The structure of the α3β3-component of the catalytic domain is similar to those in 

active F1-ATPases in Escherichia coli and Geobacillus stearothermophilus. However, its 

ε-subunit differs from those in these two active bacterial F1-ATPases as an ATP molecule 

is not bound to the two α-helices forming its C-terminal domain, probably because they are 

shorter than those in active enzymes and they lack an amino acid that contributes to the 

ATP binding site in active enzymes. In E. coli and G. stearothermophilus, the α-helices 

adopt an “up” state where the α-helices enter the α3β3-domain and prevent the rotor from 

turning. The mycobacterial F1-ATPase is most similar to the F1-ATPase from 
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Caldalkalibacillus thermarum, which also hydrolyzes ATP poorly. The βE-subunits in both 

enzymes are in the usual “open” conformation, but appear to be occupied uniquely by the 

combination of an ADP molecule with no magnesium ion, plus phosphate. This occupation 

is consistent with the finding that their rotors have been arrested at the same point in their 

rotary catalytic cycles. These bound hydrolytic products are probably the basis of inhibition 

of ATP hydrolysis. It can be envisaged that specific as yet unidentified small molecules 

might bind to the F1-domain in M. tuberculosis, prevent ATP synthesis and inhibit the 

growth of the pathogen. 

[247 words] 

\body 

Introduction 

In 2017, around 1.6 million people died from tuberculosis (TB), and Mycobacterium 

tuberculosis, the causative bacterium, is now the second greatest killer of mankind by a 

single infectious agent, surpassed in its lethal impact only by HIV/AIDS (1). Of the 10 

million people estimated to have developed TB in that single year, 4.6% were resistant to 

both rifampicin and isoniazid and are classed as multidrug-resistant (MDR), and 8.5% of 

the MDR-TB cases were extensively drug-resistant (XDR). Only 55% of the MDR-TB and 

30% of the XDR-TB cases were treated successfully. These alarming statistics serve to 

emphasize the urgent need to develop new drugs that are effective and fast-acting against 

drug-resistant strains of M. tuberculosis. Preferably, they should be effective also against 

latent M. tuberculosis infections, where the bacteria lie dormant in infected humans in a 

non-replicating state before emerging as an active infection. It has been estimated that 

between a quarter and a third of the world’s population are latently infected (2). However, 

the impact of this latency has been questioned recently as nearly everyone who falls 
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seriously ill with TB does so within two years of being infected, and latent infections rarely 

become active, even in old age (3). 

 In 2012, the US Food and Drug Administration approved the use of a novel oral 

drug bedaquiline (SIRTURO™) for the treatment of MDR-TB (4, 5), and bedaquiline 

received fast-track approval as a component of a combination therapy for the treating 

MDR-TB in adults. Its potential to shorten dramatically the treatment time for MDR-TB is 

highlighted by two recent studies. In mouse models of TB, a combination of bedaquiline 

with PA-824, an anti-mycobacterial drug with a complex mode of action (6) and linezolid, 

a repurposed protein synthesis inhibitor, significantly improved efficacy and relapse rates 

compared to the frontline regimen of rifampicin, isoniazid and pyrazinamide (7, 8). In the 

Nix-TB phase III clinical trial using this three-drug combination, 74% of the patients with 

MDR-TB were culture negative in 8 weeks*. The most recent recommendations for 

treatment of MDR-TB, based on the balance of effectiveness and harm and a preference 

for oral administration, now include bedaquiline (9). Bedaquiline is effective against both 

actively growing and non-replicating cells of M. tuberculosis, and acts by inhibiting the 

ATP synthase (10, 11) thereby shutting off the supply of cellular energy in the bacterium, 

without noticeably affecting the human enzyme found in the inner membranes of 

mitochondria. Thus, these observations provide proof of principle that the mycobacterial 

ATP synthase is a suitable target for developing new drugs to combat tuberculosis. A 

rational approach to the design of new drugs in addition to bedaquiline to inhibit the 

mycobacterial ATP synthase requires ideally that the structures and mechanistic and 

regulatory mechanisms of the human and mycobacterial ATP synthases be understood. The 

human enzyme is very similar in both respects to the well-studied bovine enzyme, which 

therefore provides an excellent surrogate. Mycobacterial ATP synthases have been less 
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studied, and only the structure of the c-ring in the membrane domain of the enzyme’s rotor 

in the enzyme from the non-pathogenic organism, M. phlei, has been established (12). It is 

here that bedaquiline binds (12), presumably impeding the turning of the rotor in the intact 

enzyme. It has been proposed that it also binds at a secondary site in the ε-subunit (13, 14). 

Before, the work described here, the structure of its F1-catalytic domain was not known in 

any mycobacterial ATP synthase and there was no molecular understanding of why the 

mycobacterial enzymes are barely capable of hydrolyzing ATP (15), whereas, for example 

the enzymes from facultative anaerobes such as Escherichia coli can both synthesize and 

hydrolyze ATP. Here, we describe the structure of the inhibited state of the catalytic 

domain of the ATP synthase from another non-pathogenic mycobacterium, Mycobacterium 

smegmatis. It is an excellent surrogate for the catalytic domain of the F1-ATPase from M. 

tuberculosis, as a comparison of the sequences of the subunits from various mycobacterial 

species demonstrates (SI Appendix, Fig. S1 and Table S1). 

Results and Discussion 

Characterization of F1-ATPase from M. smegmatis. The nine subunits of the ATP 

synthase in M. smegmatis are encoded by the atp operon, which includes the cluster of 

genes atpAGDC encoding the constituent α-, γ-, β- and ε-subunits, respectively, of the F1-

ATPase complex. This cluster was amplified by PCR, modified to encode the N-terminus 

of the β-subunit fused to a hexahistidine tag with an intervening protease cleavage site, and 

the vector containing the four genes was introduced into M. smegmatis. Attempts to over-

express the M. tuberculosis orthologs in M. smegmatis in the same way failed as the genes 

from the two mycobacterial species recombined. The over-expressed purified F1-ATPase 

(SI Appendix, Fig. S2) was a single complex with a mass of 380 kDa, composed of the 
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expected complement of α-, β-, γ- and ε-subunits with their characteristic molecular masses 

(SI Appendix, Fig. S3 and Table S2). It had a very low ATP hydrolase activity (0.07 U/mg), 

and, in contrast to some other latent F1-ATPases, for example the enzyme from 

Caldalkalibacillus thermarum (16), this low activity could not be stimulated by 

lauryldimethylamine oxide (LDAO). However, when the mycobacterial enzyme was 

treated briefly with trypsin, the specific activity increased by one hundred-fold to 7 U/mg. 

Although characterization of the proteolytic fragments (SI Appendix, Table S3) did not 

provide a clear indication of the mechanism of activation, it is worth noting that the ε-

subunit had been degraded almost completely after 2 min, with a corresponding significant 

increase in activity. In E. coli F1-ATPase and also F1Fo-ATPase from M. smegmatis, 

activation by trypsinolysis has been attributed to removal of the ε-subunit (17). The activity 

of F1-ATPase from M. smegmatis uncovered by trypsinolysis was doubled by the addition 

of LDAO (SI Appendix, Fig. S4). 

Structure Determination. Hexagonal crystals of the complex containing all four subunits 

(SI Appendix, Fig. S5) have the unit-cell parameters a=b=105.2 Å, c=628.6 Å, with 

α=β=90.0o, γ=120.0o and belong to space group P3121 with one F1-ATPase in the 

asymmetric unit (see SI Appendix, Table S4 for summary of data collection and refinement 

statistics). The quality of the electron density map is indicated in SI Appendix, Fig. S6, 

where representative segments and their interpretation are shown. The structure (Fig. 1A) 

contains the following residues: αE, 31-190, 202-511, and 1512-1522 (corresponding to the 

C-terminal extension, where the register is unclear. Here, the residue numbers have been 

increased by 1000 to indicate uncertainty, as required by the PDB); αTP, 30-190, 202-406 

and 414-511; αDP, 30-190, 202-409 and 412-511; βE, 9-41, 47-108, 116-132 and 136-471; 
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βTP, 8-41, 47-108 and 114-471; βDP, 9-41, 47-108 and 116-471; γ, 4-57, 84-108, 119-129, 

139-163, 188-198 and 238-304; ε, 3-115. Overall, the structure is similar to those of F1-

ATPases determined previously in other species (SI Appendix, Fig. S7 and Table S5), and 

especially to the F1-ATPase from C. thermarum (18) (Fig. 1B). Although the structures of 

the αE-, αTP- and αDP-subunits terminate at residue 511, the sequences of the subunits extend 

to residue 548. This C-terminal extension is characteristic of α-subunits in mycobacteria, 

and is not found in other eubacterial, chloroplast or mitochondrial sequences (SI Appendix, 

Fig. S8). By two independent programmes this extension is predicted to be intrinsically 

disordered (SI Appendix, Fig. S9), and it was possible to build a segment of 10 residues of 

extended structure immediately following the C-terminal α-helix of the αE-subunit (Fig. 

1C). However, the sequence register could not be determined unambiguously, and so this 

segment is modelled as UNK (unknown) and numbered 1512-1522. In a peptide 

representing residues 521-540 it has been shown by solution nuclear magnetic resonance 

(NMR) that residues 526-539 are α-helical, (but no coordinates are available), and on the 

basis of structure prediction that this α-helical structure prevailed in the intact protein (19). 

However, the current prediction of intrinsic disorder in the entire C-terminal region from 

residues 512-548 (SI Appendix, Fig. S9), and the secondary structures of the subunit in 

seven mycobacterial species predicted with PSIPRED (20) (SI Appendix, Fig. S10), are not 

in accord with this proposal. Another program, Predator (21), used previously (19), gives 

an ambiguous answer, predicting an α-helix in the region of residues 530-540 in four out 

of the seven species including M. tuberculosis, but not M. smegmatis (Fig S10), M. phlei 

or M. ulcerans. In conclusion, on the basis of the current structure predictions, (and 

acknowledging that NMR studies show that residues 526-539 in the isolated segment from 

residues 521-540 are α-helical), it appears on balance to be unlikely that an α-helix forms 
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in this region of the intact α-subunit. Nonetheless, it remains possible that this additional 

region of the mycobacterial subunits could play a role in the regulation of the enzyme (19). 

The α3β3-Domain. In the nucleotide binding sites of the three α-subunits and the βTP-

subunit, additional electron density is compatible with them being occupied by an ADP 

molecule, plus a magnesium ion (Fig. 2). There is also additional electron density 

associated with the nucleotide binding sites in both the βDP- and βE-subunits. Although the 

additional density is discontinuous in the former, it can be interpreted plausibly as ADP 

plus a magnesium ion also. In the latter site, the additional density is associated with the 

region of the P-loop where the α- and β- phosphates of a nucleotide would be bound, as for 

example in the βE-subunit of the F1-ATPase from C. thermarum (18), (where an ADP 

molecule with no magnesium ion is bound at 50-100% occupancy when crystals were 

grown in the presence of 500 µM ADP). Both ADP and a single phosphate ion were tested 

near the P-loop at various occupancies, but neither refined well into this site. However, 

there is, also additional density above the P-loop where a phosphate ion has been modelled, 

as in the βE-subunit of the C. thermarum enzyme where a phosphate ion sits above the 

ADP. Although this density has been modelled as phosphate, it could possibly be a sulfate 

introduced from the crystallization buffer. Superimposition of the structures of the F1-

ATPases from M. smegmatis and C. thermarum via their α3β3-domains showed that the two 

structures are very similar (rmsd value 0.91 Å). The occupancy of nucleotide binding sites 

in the C. thermarum enzyme is ADP and a magnesium ion in the three α-subunits and in 

the βTP- and βDP-subunits, and ADP and a phosphate without a magnesium ion in the βE-

subunit. Therefore, although the additional density in the P-loop region of the βE-subunit 

in the M. smegmatis enzyme remains uninterpreted, the close similarity of the structure to 
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the structure of the inhibited complex in C. thermarum suggests that the site is probably 

occupied by an ADP molecule (with no accompanying magnesium ion) at low occupancy. 

The γ-Subunit. The structure of the γ-subunit is the least well-resolved of the eight 

constituent subunits of the enzyme, probably because it is not constrained by any contacts 

with other F1-ATPase complexes in the crystal lattice. In C. thermarum, for example, where 

the subunit is constrained in the crystal lattice, it is resolved entirely apart from residues 1-

3. The C. thermarum subunit is folded into two α-helices in its N- and C-terminal regions 

with an intervening Rossmann fold, as in other species that have been studied (Fig. 3) (18, 

22–25). The N- and C-terminal á-helices make an antiparallel coiled-coil occupying the 

central axis of the α3β3-domain, and the Rossmann fold has five β-strands, with α-helices 

between strands 1 and 2, 2 and 3, and 3 and 4. In the mycobacterial enzyme, the N- and C-

terminal α-helices are well resolved except for approximately three α-helical turns at the 

N-terminus of the C-terminal α-helix. The intervening α-helices 2, 3 and 4 were also 

resolved, but none of the five β-strands and connecting loops in the Rossmann fold could 

be built. However, superposition of the fragmentary structure of the mycobacterial γ-

subunit upon the C. thermarum γ-subunit is consistent with the structures of the two 

orthologs being closely similar. This structural similarity extends to the γ-subunits from E. 

coli (22), P. denitrificans (23) and spinach chloroplasts (24) (Fig. 3). The overall fold of 

these γ-subunits is also similar to the γ-subunits from the enzymes from bovine (25) (Fig. 

3) and yeast (26) mitochondria, except that the N-terminal α-helices of the bacterial γ-

subunits extend further in a C-terminal direction and they are less curved. However, the γ-

subunits of the M. smegmatis and C. thermarum enzymes have an additional highly 

significant similarity that distinguishes them from the γ-subunits in the other F1-ATPases, 

and supports the view that the two determined structures represent the same inhibited state 
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of the enzyme. In the M. smegmatis and C. thermarum γ-subunits, residues 22-33, the 

“rigid-body” regions (see Materials and Methods) are rotated approximately to the same 

extent (10.5o in M. smegmatis, and 9o and 13o in the two copies in the asymmetric unit of 

the crystals of the C. thermarum enzyme, respectively), whereas the rotation angles in the 

E. coli, P. denitrificans, and spinach chloroplast enzymes, which have different nucleotide 

occupancies in their catalytic sites to the C. thermarum enzyme, are 50o, 27o and 22° 

respectively. 

 A feature, discussed before, that distinguishes mycobacterial γ-subunits from non-

mycobacterial species that might be a target for drug design, is that 12-14 amino acids are 

inserted in the region from residues 165-169 in the aligned sequences (SI Appendix, Fig. 

S11). This insertion is at the C-terminus of α-helix 4 (Fig. 3A), and is predicted to form a 

random coil (SI Appendix, Fig. S12) that might extend to the bacterial membrane surface 

(27). As this region is unresolved, it is not known whether this suggestion is correct. 

The ε-Subunit. As in ATP synthases from other eubacteria, chloroplasts, and mitochondria 

(where the orthologous protein is known as the δ-subunit) (28), the M. smegmatis ε-subunit 

has two domains (Fig. 4). The N-terminal domain is folded into an eight-stranded β-

sandwich, and is very similar to those in other species. For example, the rmsd values for 

the comparisons of the N-terminal domain of the ε-subunit from M. smegmatis with those 

from E. coli and C. thermarum are 1.2 and 1.0 Å, respectively. In contrast, the C-terminal 

domain differs substantially from those in orthologues. In E. coli, C. thermarum, G. 

stearothermophilus, and in bovine and yeast mitochondria, this region is folded into two 

α-helices, approximately 23 and 30 Å long. In E. coli (22, 29–32) and G. 

stearothermophilus (33–35), the α-helices adopt two different states, referred to as “down” 

and “up”. In the “down” state of the F-ATPase from G. stearothermophilus (35), the α-



	 11	

helices of the ε-subunit bind an ATP molecule, and are associated with the β-sandwich. In 

the absence of bound ATP, the α-helices assume the “up” position, where they lie alongside 

the γ-subunit and interact with the α3β3-domain, inhibiting ATP hydrolysis. “Up” positions 

have been captured in structures of the F1-domain from E. coli (22) and in the intact E. coli 

ATP synthase complex (32), but the isolated E. coli ε-subunit adopts a “down” 

conformation although ATP is not bound to it suggesting that ATP does not influence 

the position of the ε-subunit (29–31). In the F1-ATPase from C. thermarum, even in 

the absence of a bound ATP molecule, the α-helices remain in the “down” position and 

the “up” state has not been observed (18). In mitochondria, the two C-terminal α-helices 

of the orthologous δ-subunit are also permanently “down”, and the site where the ATP 

molecule is bound in E. coli, G. stearothermophilus and C. thermarum and is occupied by 

the single α-helix of a small protein not found in bacteria and chloroplasts, known 

confusingly as the ε-subunit (25). In the mycobacterial ε-subunits, the sequences of their 

C-terminal regions are shorter than in the other species where the structure of the subunit 

is known, and in the M. smegmatis ε-subunit, a C-terminal α-helical hairpin also forms next 

to the N-terminal domain in the “down” state, but the α-helices are truncated relative to E. 

coli, G. stearothermophilus and C. thermarum. However, despite the shorter α-helical 

hairpin in the M. smegmatis ε-subunit, the general appearance of the interaction of the 

truncated C-terminal α-helix with the N-terminal domain of the protein is conserved (Fig. 

4B), as are the number of interactions (eight in each case), and also their approximate 

positions in the N- and C-terminal domains, although none of the side-chains of these 

residues is conserved significantly in M. smegmatis (SI Appendix, Fig. S13). Furthermore, 

there is no evidence of an ATP molecule bound to the subunit. This was anticipated as Arg-

94, one of the key residues involved in binding the nucleotide in E. coli, G. 
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stearothermophilus and C. thermarum is substituted in the equivalent site by an alanine 

residue in M. smegmatis (SI Appendix, Fig. S13), and superposition of the M. smegmatis 

and E. coli F1-ATPases demonstrated that the former ε-subunit cannot assume the “up” 

position in the structure of the inhibited enzyme as its C-terminal α-helix would clash with 

the DELSEED region in the C-terminal domain of the βDP-subunit (SI Appendix, Fig. S14). 

Moreover, there is no evidence for the presence of the “up”-state in the current electron 

density map, and in an NMR structure of the isolated ε-subunit from M. smegmatis the 

protein is in the “down” position (14). This structure resembles the ε-subunit described 

here, but as the deposited co-ordinates have not been released, a precise comparison with 

the current structure was not possible. Thus, there is currently no structural evidence that 

the ε-subunit plays a role in the regulation of the hydrolytic activity of the M. smegmatis 

ATP synthase complex. 

Regulation of ATP hydrolysis. It is becoming clear that a variety of mechanisms operates 

to regulate the ATP hydrolytic activity of ATP synthases in eubacteria, mitochondria and 

chloroplasts. In α-proteobacteria, exemplified by P. denitrificans, ATP hydrolysis appears 

to be inhibited by a protein called the ζ-subunit (23, 36), where the N-terminal inhibitory 

region binds to a catalytic interface under hydrolytic conditions in a closely related fashion 

to the inhibitory action of the orthologous mitochondrial inhibitory protein IF1 on the 

mitochondrial ATP synthase (37–39). In the case of mammalian IF1, inhibition of ATP 

hydrolysis of the protein is activated by a fall in the pH (40) such as would occur in the 

mitochondrial matrix accompanying an increased reliance by cells on provision of ATP by 

glycolysis. In the chloroplasts of green plants and algae, during the hours of darkness when 

the proton motive force is low, ADP-Mg remains bound to one of the three catalytic sites 

of the enzyme forming an inactive ADP inhibited state of the enzyme (41, 42). This 
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inhibited state is stabilized by the formation of an intermolecular disulfide bond in the γ-

subunit of the enzyme. The formation of this disulfide is proposed to stabilize a β-hairpin 

structure formed by a unique additional sequence in the γ-subunit (residues 198-233 in SI 

Appendix, Fig. S11; see SI Appendix, Fig. S15) that wedges between the β-subunit and the 

central stalk, thereby blocking the rotation of the γ-subunit and preventing futile ATP 

hydrolysis. (43). With daylight and a rising proton motive force, the synthetic activity of 

the enzyme is restored by reduction of the disulfide bond by thioredoxin. The γ-subunits in 

cyanobacterial ATP synthases, also contain a related insertion (44), but it lacks the nine 

residue sequence containing the two cysteine residues (SI Appendix, Fig. S11), and, 

although the residual additional loop appears to inhibit ATP hydrolysis, it is not regulated 

by the redox mechanism found in chloroplasts (45). 

The ATPases in the aerobic bacterium G. stearothermophilus (35) and in the 

facultative anaerobe E. coli (22, 32, 46) appear to be regulated by their ε-subunit. For G. 

stearothermophilus, it has been proposed that when the proton-motive force and ATP 

concentration are low, this ATP molecule is released from the ε-subunit, allowing its two 

C-terminal α-helices to assume the “up” inhibitory position where they penetrate into a 

catalytic site alongside the rotary γ-subunit, and impede the turning of the rotor (33, 47, 

48). However, there is no evidence for the operation of a similar inhibitory mechanism in 

the thermoalkaliphile, C. thermarum, where it appears that ATP hydrolysis is prevented 

either by the failure to release the products of ATP hydrolysis from one catalytic site, or 

less likely, for those products to be released and re-bound (18). 

A characteristic feature of bacterial F-ATPases with latent hydrolytic activity is that 

ATP hydrolysis can be activated artificially in vitro. For example, LDAO activates the 

hydrolytic activity of F1-ATPase from C. thermarum 30-fold and maximum activation was 
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achieved by removal of the C-terminal domain of the ε-subunit (49). The hydrolytic activity 

of this enzyme is not activated by proteolysis and its ε-subunit is resistant to such treatment 

(49). In contrast, the F1-ATPase from M. smegmatis is activated by trypsinolysis, and its 

activity is stimulated further by the addition of LDAO. However, it is not activated by 

LDAO before trypsinolysis has taken place (SI Appendix, Fig. S4). In other bacterial 

species, the activation of hydrolytic activity by LDAO activation has been attributed to 

either release of an ADP molecule from a catalytic site (50, 51) or perturbation of the 

interaction between the �-subunit and α3β3-domain (52). However, the molecular basis of 

the activation of the hydrolytic activity of F1-ATPases, by trypsinolysis and/ or LDAO, 

including the enzyme from M. smegmatis, remains unclear. 

The current structure of the F1-ATPase from M. smegmatis, albeit at modest 

resolution, is very similar to that of the inhibited complex from C. thermarum in terms of 

the protein structure itself (apart from the C-terminal extension of α-subunits, which could 

also be involved in regulation of ATP hydrolysis). Especially, the rotational state of the γ-

subunit suggests that the ATP hydrolytic activities of the two enzymes have been arrested 

at the same point in the rotary cycle. In C. thermarum, phosphate and ADP (at 50-70% 

occupancy) without a magnesium ion are bound to the site (18), whereas the occupancy of 

the βE-subunit in the M. smegmatis enzyme is likely to be similar. The order of release of 

the products of ATP hydrolysis by F-ATPases has not been established firmly, although it 

appears that the magnesium ion leaves first as the catalytic site opens (18, 26, 53, 54). The 

data about whether the subsequent release of ADP precedes that of phosphate are 

conflicting (26, 53–58), although in other NTPases, phosphate leaves first (59–61). The 

current structure of the F1-ATPase from M. smegmatis can be interpreted as being 

consistent with such an order. 
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 Mycobacteria are obligate aerobes with an extraordinary ability to survive for 

prolonged periods of hypoxia. A key element of their survival is their ability to keep their 

respiratory chain energized and thereby to maintain their energy requirements by 

continuing to make ATP (62, 63). The membrane potential used by mycobacteria to drive 

ATP synthesis under hypoxia is low (-65 to -75 mV) (62, 63) and they are faced with the 

thermodynamic challenge of inhibiting ATPase activity, whilst at the same time remaining 

competent for ATP synthesis. If the ATP synthase were freely reversible, the cells would 

become depleted of ATP rapidly in order to re-establish the membrane potential, and they 

would die. Thus, the extreme latency of the enzyme in the direction of ATP hydrolysis is 

a characteristic feature of ATP synthases from fast and slow growing mycobacteria (15), 

and the mechanism of ATP inhibition is an intrinsic feature of the F1-domain. The structure 

of the mycobacterial F1-domain reported here is a big step towards uncovering the 

molecular basis of this inhibitory mechanism, and it provides a framework for the structure-

based design of small-molecule that might activate ATP hydrolysis or inhibit ATP 

synthesis specifically in the pathogen. 

Materials and Methods 

The F1-ATPase from M. smegmatis (subunits α, β, γ and ε) was over-expressed from a 

plasmid in M. smegmatis strain mc2 4517, purified by nickel affinity chromatography via 

a His6-tag attached to the β-subunit, size exclusion chromatography, crystallized by vapor 

diffusion and its structure solved from X-ray diffraction data by molecular replacement 

with the F1-ATPase from C. thermarum (PDB5hkk). Images of structures and electron 

density maps were prepared with PyMOL (64). For further details, see Supplementary 

Information. 

Footnotes 
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* Conradie F et al. (2017) The NIX-TB trial of pretomanid, bedaquiline and linezoid to 

treat XDR-TB. Conference on RetroViruses and Opportunistic Infections 2017  
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FIGURES 

 

 Fig. 1. The structure of the F1-ATPase from M. smegmatis. Part (A), side view in ribbon 

representation with the α-, β-, γ- and ε-subunits in red, yellow, blue and green, respectively, 

and bound nucleotides in black. Part (B), comparison of the F1-ATPase complexes from 

M. smegmatis (sky blue) and C. thermarum (18) (orange). The structures were 

superimposed via their α3β3-domains. Part (C), the C-terminal extension in the αE-subunit 

of F1-ATPase from M. smegmatis. Density extending from the C-terminal helix (residues 

494-511) was modelled from residues 1512-1522 (red), but the register is uncertain and the 

following 27 residues are unresolved. An ADP molecule (black) is shown bound to the 

nucleotide binding site.  
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Fig. 2. Occupancy of nucleotide binding sites in the α- and β-subunits of the F1-ATPase 

from M. smegmatis. An Fo-Fc difference density map was calculated for the complex with 

the nucleotides, phosphate, Mg2+ and water molecules at zero occupancy. The difference 

density is shown as green mesh contoured to 2.5 σ. Parts (A-C), the αDP-, αTP- and αE-

subunits; parts (D-F), the βDP-, βTP- and βE-subunits. In parts (A-E), the sites are occupied 

by ADP and an accompanying magnesium ion (black sphere) with four water ligands (red 

crosses); the fifth and sixth ligands are provided by O2B of the ADP and the hydroxyl of 

either αThr-179 or βThr-167. In part (F), the upper region of the catalytic site is occupied 

by a phosphate (or sulfate) ion (orange and red). Although the electron density beneath it 

in the vicinity of the P-loop, cannot be interpreted with confidence, it probably can be 

accounted for by an ADP molecule (without a magnesium ion) at partial occupancy. 
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Fig. 3. Comparison of the structure of the γ-subunits of the F-ATPases from M. smegmatis 

with those of orthologues. Part (A), M. smegmatis with the five α-helices numbered 1-5 

from N- to C-terminus; part (B), E. coli (22); part (C), C. thermarum (18); part (D), P. 

denitrificans (23); part (E), chloroplast from spinach (24); part (F), bovine mitochondria 

(25). 
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Fig. 4. The structure of the ε-subunit of the F1-ATPase from M. smegmatis compared with 

orthologs. Part (A), the mycobacterial ε-subunit showing the N-terminal β-sandwich and 

the C-terminal α-helical domains; part (B), superimposition of the ε-subunits from M. 

smegmatis (green), C. thermarum (18) (grey), E. coli (29) (pink) and the bovine δ-subunit 

(25) (slate blue). The N-terminal domains are very similar, but both C-terminal helices of 

the M. smegmatis protein are shorter than in the other examples. 

  



	 28	

Supplementary Appendix for: 
Structure of the catalytic domain of the ATP synthase from 
Mycobacterium smegmatis: a surrogate target for development 
of anti-tubercular drugs 
 
Alice Tianbu Zhanga1, Martin G. Montgomerya1, Andrew G. W. Leslieb, 
Gregory M. Cooka,c, and John E. Walkera,2 
aThe Medical Research Council Mitochondrial Biology Unit, University of Cambridge, 
Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom; bThe 
Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical 
Campus, Francis Crick Ave, Cambridge, CB2 0QH United Kingdom; cDepartment of 
Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand. 
 
Materials and Methods 
General Procedures. Protein concentrations were measured with bicinchoninic acid 
(Thermo Fisher Scientific). Proteins were analyzed by SDS-PAGE in 12-22% Tris-glycine 
gels and by blue native polyacrylamide gel electrophoresis (BN-PAGE) in 3-12% Bis-tris 
native gels (Life Technologies). They were detected by staining with Coomassie-Blue dye 
or silver. 
 
Overexpression of the F1-ATPase from M. smegmatis. The genes encoding the α-, β-, γ- 
and ε-subunits of the F1-ATPase were amplified by PCR with DNA from M. smegmatis 
strain mc2 155 as template. A hexahistidine tag and an intervening site for cleavage with 
the protease from tobacco etch virus were introduced at the N-terminus of the β-subunit. 
The genes were cloned into the E. coli-mycobacterium shuttle vector pYUB1049. The 
resulting expression shuttle plasmid with a T7 promoter was transformed into cells of M. 
smegmatis expression strain mc2 4517 encoding T7 polymerase (1). The transformed cells 
were cultured at 37°C in 2xTY medium supplemented with hygromycin B (100 μg/ml), 
kanamycin (50 μg/ml) and Tween-80 (0.05%, v/v). When the OD600 of the culture had 
reached ca. 1.0, expression of the F1-ATPase was induced by addition of 1 mM isopropyl 
β-D-1-thiogalactopyranoside. The cells were grown for 24 h at 30°C, and then harvested. 
 
Purification of the Enzyme. The M. smegmatis cells (30 g) were resuspended in buffer 
(100 ml) consisting of 50 mM Tris-HCl, pH 7.5, 150 mM sodium chloride, 20% (v/v) 
glycerol, 20 mM imidazole, 5 mM magnesium sulfate, 1 mM tris-(2-carboxyethyl)-
phosphine, 1 mM ADP and an EDTA-free protease inhibitor cocktail (Roche). They were 
sonicated, passed at 4°C through a cell disruptor (Constant Systems Limited) at 30,000 psi. 
and centrifuged (151,000xg, 45 min, 4°C). All subsequent steps were performed at room 
temperature. The supernatant was applied to a nickel Sepharose HisTrap HP column (5 ml; 
GE Healthcare Life Sciences), which was washed successively with 40 mM and 250 mM 
imidazole (Fig. S2). Fractions containing the F1-ATPase were pooled and TEV protease 
(2) was added at a protein:protease ratio of 50:1 (w:w). This solution was dialyzed for 1 h 
at room temperature in a Spectra/Por dialysis membrane (molecular weight cut off 3500 
Da) against 1 l of buffer consisting of 50 mM Tris-HCl, pH 7.5, 20% (v/v) glycerol, 5 mM 
magnesium sulfate, 1 mM tris-(2-carboxyethyl)-phosphine, 1 mM ADP and an EDTA-free 
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protease inhibitor cocktail. The dialyzed sample was applied to two nickel and two Q-
Sepharose HiTrap HP columns (1 ml each; GE Healthcare Life Sciences) connected in 
series. Once the bound proteins had flowed through, the nickel columns were removed, 
and the Q-Sepharose columns were eluted with a linear gradient of sodium chloride from 
0 to 1 M (Fig. S2). Fractions containing F1-ATPase were pooled, concentrated and passed 
through a Superdex 200 10/300 column (GE Healthcare Life Sciences) equilibrated with 
buffer consisting of 20 mM Tris-HCl, pH 7.5, 10% (v/v) glycerol, 2 mM magnesium 
sulfate, 1 mM ADP and an EDTA-free protease inhibitor cocktail (Fig. S2). The yield of 
pure enzyme was 15 mg. 
 
Enzyme Assay. The ATP hydrolytic activity of the M. smegmatis F1-ATPase was 
measured at 37oC in the presence of an ATP regenerating system (3). The latent enzyme 
was activated by digestion for 10 min at 37°C with bovine trypsin (1 mg/ml) at a trypsin:F1-
ATPase ratio of 1:50 (w/w). Digestion was terminated with a 2-fold molar excess of bovine 
pancreatic trypsin inhibitor (5 mg/ml). Further activation was achieved by the addition of 
LDAO to a concentration of 0.4 %. 
 
Mass Spectrometry. Proteins in stained bands from SDS-PAGE gels were identified by 
mass mapping of tryptic peptides by matrix assisted laser desorption ionization-time of 
flight mass spectrometry. The purified F1-ATPase and the products of 10 min of 
trypsinolysis were fractionated by reverse phase HPLC, passed directly into the 
electrospray ionization inlet of a Quattro Ultima quadrupole mass spectrometer (Waters-
Micromass), and the masses of the intact subunits and their fragments were measured 
(Table S2). 
 
Crystallization of the Enzyme. Purified F1-ATPase was concentrated with a VivaSpin 
concentrator (molecular weight cut off 100 kDa) and centrifuged (168,000xg, 30 min, 
21°C). Crystals were grown by vapor diffusion in 400 nl or 4 μl sitting drops in 96- or 48-
well plates (Swissci) at a protein concentration of 20-30 mg/ml in buffer containing 300 
mM magnesium formate and 100 mM Tris-HCl, pH 7.5, and 23% (w/v) polyethylene 
glycol (PEG) 4000 (the volume ratio of the protein solution and precipitant was 1:1) After 
2-3 weeks, the largest hexagonal crystals had dimensions of ca. 250 x 200 x 20 μm (Fig. 
S5). They were cryo-protected with 20% PEG 400, harvested with 60° angled MicroLoops 
(MiTeGen, U. S. A.) and vitrified in liquid nitrogen. 
 
Data Collection. Initial X-ray diffraction data were collected at the Swiss Light Source 
(Villigen, Switzerland) and the European Synchrotron Radiation Facility (Grenoble, 
France). The definitive data were collected at 100K at 1.0 Å wavelength on beamline I04 
with a Pilatus 6M-F detector (Dectris, Switzerland) at The Diamond Light Source (Didcot, 
U. K.). In order to obtain maximum separation of reflections, vitrified crystals were 
mounted on a mini-κ-goniometer, orientated with the longest axis of the unit cell nearly 
parallel to the data collection axis. 
 
Data processing. Data were processed with programs from the CCP4 suite (4). Diffraction 
images were integrated with iMOSFLM (5) and the data reduced with AIMLESS (6) and 
CTRUNCATE (4). Molecular replacement was carried out with PHASER (7). The F1-
ATPase from C. thermarum (PDB5hkk) (8), but without nucleotides, phosphate or water 
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molecules, was used as an initial model for molecular replacement. The model was refined 
in REFMAC5 (9) using additional restraints provided by PROSMART (10) derived from 
the F1-ATPase from C. thermarum (8). Alternate rounds of refinement with REFMAC5 (9) 
and manual rebuilding with COOT (11) were carried out. Following each round of 
refinement, the stereochemistry of the model was assessed with COOT and MolProbity 
(12). Electron density maps presented in figures were made by FFT (fast Fourier transform) 
in the CCP4 package (4).  Grid sampling was doubled for the Fo-Fc map (Fig. 2) and tripled 
for the 2Fo-Fc map (Fig. S6) to produce a tighter mesh for improved image quality in 
PyMol (13). Images of structures and electron density maps were prepared with PyMOL 
(13). 
 
Protein analyses. Sequences of proteins were aligned with CLUSTAL O via the UniProt 
website (14), and the secondary structures of proteins and intrinsic disorder were predicted 
with PSIPred (15) and PrDOS (16). RMSDs were calculated in PyMol (13) comparing Cα 
only, with 0 cycles of refinement. The total atom pairs for each subunit are listed in Table 
S5. 
 
Rotation of the γ-Subunit. Residues 24-34 of the M. smegmatis γ-subunit (and equivalent 
regions in other F1-ATPases) interact with the C-terminal domains of the α- and β-subunits, 
and this segment acts a rigid body uninfluenced by contacts in the crystal lattice between 
adjacent F1-ATPase complexes. In contrast, residues 33-226 of the γ-subunit, and the 
associated δ- and ε-subunits lie outside the α3β3-domain, where their positions may be 
subject to such influences. Therefore, the rotations of residues 24-34 of the γ-subunit in the 
various aligned structures were measured relative to the position of the same segment 
(residues 22-32) in the ground state structure of azide-free bovine F1-ATPase (17). These 
measurements were made by aligning the structures via the crown domains at the N-termini 
of α- and β-subunits, and then calculating the centre of mass of residues 22-33 of the γ-
subunit and determining the rotation angle required to match its position with that of the 
equivalent segment in the bovine azide-free ground state structure, which was taken as the 
reference point, set as 0° (18). 
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Fig S1. Comparison of the sequences of the subunits of the F1-domain of ATP synthases 
from various mycobacterial species. Msme, M. smegmatis; Mtub, M. tuberculosis; Mphl, 
M. phlei; Mlep, M. leprae. Parts (A-D), the α-, β-, γ- and ε-subunits, respectively. Dark 
blue areas contain identical residues and light blue areas conserved residues. The grey and 
white boxes indicate regions of α-helix and β-sheet, respectively. In parts (A) and (B), 
orange and green lines denote the Walker A and Walker B motifs, respectively, and in (A), 
the red star indicates the catalytically essential “arginine finger” residue. 
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Table S1. Percentage identities of sequences of subunits of the F1-domain of ATP 
synthases from four species of mycobacteria. The full names of the species are given in the 
legend to Fig. S1. 
α-subunit Msme Mtub Mphl Mlep 

Msme 100 84.31 91.06 82.66 

Mtub 84.31 100 84.15 89.98 

Mphl 91.06 84.15 100 82.33 

Mlep 82.66 89.98 82.33 100 

 
β-subunit Msme Mtub Mphl Mlep 

Msme 100 92.39 94.98 90.74 

Mtub 92.39 100 91.86 92.37 

Mphl 94.98 91.86 100 90.17 

Mlep 90.74 92.37 90.17 100 

 
γ-subunit Msme Mtub Mphl Mlep 

Msme 100 78.18 88.60 75.90 

Mtub 78.18 100 76.55 83.93 

Mphl 88.60 76.55 100 73.94 

Mlep 75.90 83.93 73.94 100 

 
ε-subunit Msme Mtub Mphl Mlep 

Msme 100 80.17 81.82 76.03 

Mtub 80.17 100 80.17 87.60 

Mphl 81.82 80.17 100 77.69 

Mlep 76.03 87.60 77.69 100 
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Fig. S2. Purification of F1-ATPase from M. smegmatis. A, Nickel affinity chromatography. 
Solid line, absorbance of the effluent at 280 nm; red dashed line, gradient of imidazole. B, 
analysis by SDS-PAGE of fractions 22-30 from A. L, loaded sample. C, Anion exchange 
chromatography of the pooled fractions from peak Ni1 in A. The red dashed line is the 
concentration of sodium chloride. D, SDS-PAGE analysis of proteins in peak QI and QII. 
Fractions from peak QII were pooled as indicated. Lane L is the loaded sample; E, passage 
of purified F1-ATPase from M. smegmatis through a column of Superdex 200 (10/300); F, 
analysis by SDS-PAGE of fractions from the main peak in part E. The identities of subunits 
of the enzyme are indicated on the left, and the positions of molecular weight markers (M) 
on the right. 
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Fig. S3. Characterization of F-ATPase purified from M. smegmatis. A, subunit 
composition analyzed by SDS-PAGE and mass-mapping of tryptic peptides. The identities 
of subunits are indicated on the left; B, analysis by blue native PAGE. The positions of 
molecular weight markers are shown on the right. In A and B, proteins were detected by 
staining with Coomassie blue dye. 
 
 
Table S2. Molecular masses of subunits of the F1-ATPase from M. smegmatis. 

 Mass (Da)   
Subunit Observed (SDa) Calculatedb Difference Modification 
α 58764.49 (5.4) 58757.6 6.9 - Metc 

β 51546.25 (2.8) 51542.65 3.6 - Metc + Glyd 

γ 33267.37 (1.8) 33266.71 0.7 - Metc 

ε 13133.69 (0.9) 13133.62 0.1 - Metc 

a SD, standard deviation; b calculated after the modifications given under footnotes c and d; 
c removal of the N-terminal methionine residue; d an additional N-terminal glycine residue, 
part of the TEV cleavage site. 
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Fig S4. Activation of F1-ATPase from M. smegmatis by trypsinolysis, and further 
activation of the trypsin treated enzyme with LDAO. The F1-ATPase: trypsin ratio was 
50:1 (w:w). Digestion at each interval was terminated with bovine pancreatic trypsin 
inhibitor. A, effect of trypsin treatment on the activity; B, analysis of the products of 
trypsinolysis by SDS-PAGE. Proteins were detected with Coomassie blue dye and 
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proteolytic fragments were analyzed by mass spectrometry (SI Appendix, Table S3); C, 
stimulation with LDAO of the activity of the enzyme that had been trypsinized for 10 min. 
Assays of activation of ATP hydrolysis were performed in triplicate. 

Table S3. Characterization of products of trypsinolysis of F1-ATPase from M. smegmatis. 

Fragments of the subunits of the enzyme resulting from 10 min digestion with trypsin (see 
SI Appendix, Fig. S4) were analyzed by electro-spray ionization mass spectrometry. No 
fragments of the ε-subunit were recovered, and it appears to have been degraded 
extensively. 

 Mass (Da)  
Subunit Observed (SDa) Calculated Difference Fragment residues 
α’ 55160.36 (5.9) 55157.65 2.7 29-541 
β 51545.07 (3.0) 51542.65 2.4 1-475 
γ’ 23814.40 (1.3) 23814.08 0.3 1-219 
γ’’ 9470.97 (0.4) 9470.64 0.3 220-307 

a Standard deviations 
 

 

Fig. S5. Crystals of the F1-ATPase from M. smegmatis. (A) a hexagonal crystal. The scale 
bar represents 100 μm; B, SDS-PAGE analysis of crystals. The protein bands were stained 
with silver. The positions of subunits are shown on the left; C, central region of X-ray 
diffraction image of a crystal. 
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Table S4. Data collection and refinement statistics. Parentheses denote the statistics for the 
high-resolution bin. 

Parameter  

Space group P3121 

Unit cell dimensions a, b, c (Å) 105.2, 105.2, 628.6  

Resolution range (Å) 4.0-45.6 

High-resolution bin (Å) 4.00-4.20 

No. of unique reflections 35040 (4590) 

Multiplicity 4.3 (4.0) 

Completeness (%) 99.0 (99.0) 

Rmerge1 0.125 (0.512) 

<I/σ (I)> 7.0 (2.8) 

B factor, from Wilson plot (Å)2 108.9 

R factor2 (%) 33.1 

Free R factor3 (%) 36.7 

rmsd of bonds (Å) 0.003 

rmsd of angles (°) 0.73 

1 Rmerge = ∑h∑i|I(h)-I(h)i|/∑h∑iI(h)i, where I(h) is the mean weighted intensity after rejection 
of outliers 
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2 R factor = ∑hkl∣∣Fobs∣ - k∣Fcalc∣∣/∑hkl∣Fobs∣, where Fobs and Fcalc are the observed and 
calculated structure factor amplitudes, respectively. 

3 Rfree = ∑hklÌT∣∣Fobs∣-k∣Fcalc∣∣/∑ hklÌT∣Fobs∣, where Fobs and Fcalc are the observed and the 
calculated structure factor amplitudes, respectively, and T is the test set of data omitted 
from refinement. 
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Fig. S6. Examples of regions of the 2Fo-Fc electron density map derived by X-ray analysis 
of crystals of F1-ATPase from M. smegmatis. A and B, four β-strands consisting, from left 
to right, of residues155-160, 302-309, 248-255 and 182-191 of the βTP-subunit contoured 
at 1.0 and 1.5 σ, respectively; C, the α-helix from residues 224-247 in the βTP-subunit; D, 
residues 492-1522 in the C-terminal region of the αE-subunit. C and D are contoured at 1.0 
σ. 



	 43	

  
Fig. S7. Comparison of the structure of the F1-ATPase from M. smegmatis with those of 
other F1-ATPases. In A, B, and C, the M. smegmatis complex (blue) is compared with F1-
ATPases from bovine mitochondria (17) (green, 2JDI), E. coli (19) (pink, 3OAA molecule 
1), and the F1-domain from the structure of the intact ATP synthase from P. denitrificans 
(20) (yellow, 5DN6), respectively. For the rmsd values, see Table S5. 
 
 
 
 
 
 
Table S5. Comparison of the structure of the F1-ATPase from M. smegmatis with those of 
other F1-ATPases. 
Species rmsda (Å) all subunits 

[residues matched] 
rmsd (Å) α3β3 only 
[residues matched] 

Bovine (2jdi) 2.8 [2950] 1.3 [2378] 
Bovine (1e79) 4.0 [3034] 1.3 [2747] 
Bovine (4xyw) 3.1 [3020] 1.2 [2739] 
Bovine (4asu) 2.4 [2980] 1.6 [2734] 
Bovine (2jj2 - molecule 1)b 1.4 [2900] 1.2 [2744] 
C. thermarum (5hkk) 1.9 [3048] 0.9 [2752] 
E. coli (3oaa - molecule 1) 4.4 [2998] 3.1 [2729] 
P. denitrificans (5DN6) 1.8 [2919] 1.7 [2730] 

a calculated with α-carbons only; b This low rmsd value arises because only the α-helical 
coiled-coil (α-helices αH1 and αH5 in Fig. 3) of the γ-subunit was resolved. The entire δ- 
and ε-subunits were not resolved in this structure. 
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Fig. S8. Comparison of sequences of the α-subunits of ATP synthases from various 
sources. MYCS2, M. smegmatis; ECOLI, E. coli; CALTT, C thermarum; PARDP, P. 
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denitrificans; SPIOL, Spinacia oleracea; YEAST, S. cerevisiae; BOVIN, bovine 
mitochondria. Asterisks denote identities; colons strong conservation, and full stops, weak 
conservation. 
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Fig. S9. Predicted regions of intrinsic disorder in the α-subunits of the F1-ATPases from 
various mycobacteria. (A), M. smegmatis; (B), M. tuberculosis; (C) M. sp JS62; (D), M. 
phlei; (E), M. africanum; (F), M. ulcerans; (G), M. bovis. The dashed line at a probability 
of 50% crosses the subunit at approximately residue 510. The predictions were made with 
PSIPred, and they agree with independent predictions made with PrDOS. 
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Fig. S10. Predicted secondary structures of the C-terminal regions of the α-subunits of the 
F-ATPases from various mycobacteria (A), M. smegmatis; (B), M. tuberculosis; (C) M. sp 
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JS623; (D), M. phlei; (E), M. africanum; (F), M. ulcerans; (G), M. bovis. Predictions with 
PSIPred and Predator are shown. The confidence score applies to PSIPred only. 
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Fig. S11. Alignment of sequences of the γ-subunits of ATP synthases from various sources. 
For definition of species and definition of symbols, see legend to SI Appendix, Fig. S8. 
The additional sequence SYNP6 relative to SI Appendix, Fig. S8 is from Synechcococcus 
6301. 

 
Fig. S12. Predicted secondary structure of the γ-subunit from M. smegmatis with PSIPred. 
The insert (residues 166-179), predicted to be random coil, is in the spring domain. 
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Fig. S13. Alignment of sequences of the ε-subunits of ATP synthases from various species. 
For definition of species and definition of symbols, see legend to SI Appendix, Fig. S8; 
GEOSE, G. stearothermophilus. The residues marked in red are required for binding an 
ATP molecule to the ε-subunits in E. coli, C. thermarum, and G. stearothermophilus. The 
residues marked with blue preceding the red residues are in the N-terminal domains of the 
structures of the ε-subunits from M. smegmatis, E. coli and G. stearothermophilus. They 
are involved in forming interactions within 4 Å with residues in blue that follow the red 
residues which are found in the C-terminal domains of the respective subunits. 



	 51	

 
 
Fig. S14. Superimposition of the ε-subunit from E. coli F1-ATPase (19) in the “up” position 
upon the structure of the F1-ATPase from M. smegmatis. A, side view of the lower part of 
F1-ATPase from M. smegmatis showing parts of the βDP- and γ- subunits (yellow and blue 
respectively), and the entire ε-subunit (green) in the “down” position; B, as A, but with the 
E. coli ε-subunit (pink) in the “up” position superimposed by alignment of their N-terminal 
domains; C, as B, with the alignment via the α3β3 domains of the F1-ATPases from M. 
smegmatis and E. coli; D, as C, but additionally with the βDP-subunit from E. coli (brown). 
Its position is displaced relative to the M. smegmatis βDP-subunit by the rotation of the E. 
coli γ-subunit to the right compared with the M. smegmatis γ-subunit, which also changes 
the position of the C-terminal domain of the E. coli ε-subunit. The C-terminal α-helix of 
the E. coli ε-subunit clashes with the DELSEED region of the M. smegmatis βDP-subunit. 
The shorter C-terminal α-helices of the M. smegmatis ε-subunit could theoretically reach 
inside its F1-domain to about the position of the end of turn 2 of helix 2 in E. coli, but the 
lack of displacement in the M. smegmatis structure of the βDP- and γ-subunits similar to the 
observed displacement in the E. coli complex (part D), prevents this theoretical structure 
of the M. smegmatis ε-subunit from being accommodated. 
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Fig. S15. Detail of the lower part of the γ-subunit of the ATP synthase from spinach 
chloroplasts (21) (PDB code: 6fkf). αH1 and αH5 are the coiled-coil region of the subunit. 
The associated Rossmann fold is on the right of the coiled-coil. The yellow and red regions 
represent the structure of the additional region characteristic of chloroplast ATP synthases 
that is involved in the inhibition of ATP hydrolysis during the hours of darkness by the 
formation of a disulfide linkage between cysteine residues at each end of the nine residue 
red structure. The yellow segments of sequence, but not the red ones, are conserved in 
cyanobacteria. 
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