7 research outputs found

    Maternal mosaicism for IDUA deletion clarifies recurrence risk in MPS I.

    No full text
    Mucopolysaccharidosis I (MPS I) is a rare autosomal recessive multisystem lysosomal storage disorder. It is caused by biallelic loss-of-function variants in IDUA, encoding alpha-l iduronidase. Here, we describe an individual affected by MPS I due to a paternally inherited deletion of IDUA exons 1 and 2, c.(?_-88)_(299+1_300-1)del and a whole-gene deletion of IDUA (?_-88?)_(*136?)del secondary to maternal somatic mosaicism. We define a previously unreported mutational mechanism for this disorder

    Diagnosing Childhood-onset Inborn Errors of Metabolism by Next Generation Sequencing

    Get PDF
    BACKGROUND : Inborn errors of metabolism (IEMs) underlie a substantial proportion of paediatric disease burden but their genetic diagnosis can be challenging using the traditional approaches. METHODS : We designed and validated a Next Generation Sequencing (NGS) panel of 226 IEM genes, created six overlapping phenotype-based sub-panels and tested 102 individuals, who presented clinically with suspected childhood-onset IEMs. RESULTS : In 51/102 individuals, NGS fully or partially established the molecular cause or identified other actionable diagnoses. Causal mutations were identified significantly more frequently when the biochemical phenotype suggested a specific IEM or a group of IEMs (p<0·0001), demonstrating the pivotal role of prior biochemical testing in guiding NGS analysis. The NGS panel helped to avoid further invasive, hazardous, lengthy or expensive investigations in 69% individuals (p<0·0001). Additional functional testing due to novel or unexpected findings had to be undertaken in only 3% of subjects, demonstrating that use of NGS does not significantly increase the burden of subsequent follow-up testing. Even where a molecular diagnosis could not be achieved, NGS-based approach assisted in the management and counselling by reducing the likelihood of a high-penetrant genetic cause. CONCLUSIONS : NGS has significant clinical utility for the diagnosis of IEMs. Biochemical testing and NGS analysis play complementary roles in the diagnosis of IEMs. Incorporating NGS into the diagnostic algorithm of IEMs can improve the accuracy of diagnosis.The Manchester Biomedical Research Centre, the British Inherited Metabolic Disease Group 2015 Studentship scheme and the Central Manchester NHS Foundation Trust Newly Appointed Consultants Leadership Programme 2014.http://adc.bmj.comhb2017Paediatrics and Child Healt

    The lysosomal storage disorders mucolipidosis type II, type III alpha/beta, and type III gamma : update on GNPTAB and GNPTG mutations

    No full text
    Mutations in the GNPTAB and GNPTG genes cause mucolipidosis (ML) type II, type III alpha/beta, and type III gamma, which are autosomal recessively inherited lysosomal storage disorders. GNPTAB and GNPTG encode the α/β‐precursor and the γ‐subunit of N‐acetylglucosamine (GlcNAc)‐1‐phosphotransferase, respectively, the key enzyme for the generation of mannose 6‐phosphate targeting signals on lysosomal enzymes. Defective GlcNAc‐1‐phosphotransferase results in missorting of lysosomal enzymes and accumulation of non‐degradable macromolecules in lysosomes, strongly impairing cellular function. MLII‐affected patients have coarse facial features, cessation of statural growth and neuromotor development, severe skeletal abnormalities, organomegaly, and cardiorespiratory insufficiency leading to death in early childhood. MLIII alpha/beta and MLIII gamma are attenuated forms of the disease. Since the identification of the GNPTAB and GNPTG genes, 564 individuals affected by MLII or MLIII have been described in the literature. In this report, we provide an overview on 258 and 50 mutations in GNPTAB and GNPTG, respectively, including 58 novel GNPTAB and seven novel GNPTG variants. Comprehensive functional studies of GNPTAB missense mutations did not only gain insights into the composition and function of the GlcNAc‐1‐phosphotransferase, but also helped to define genotype‐phenotype correlations to predict the clinical outcome in patients

    The lysosomal storage disorders mucolipidosis type II, type III alpha/beta, and type III gamma: Update on GNPTAB and GNPTG mutations

    No full text
    Mutations in the GNPTAB and GNPTG genes cause mucolipidosis (ML) type II, type III alpha/beta, and type III gamma, which are autosomal recessively inherited lysosomal storage disorders. GNPTAB and GNPTG encode the α/β-precursor and the γ-subunit of N-acetylglucosamine (GlcNAc)-1-phosphotransferase, respectively, the key enzyme for the generation of mannose 6-phosphate targeting signals on lysosomal enzymes. Defective GlcNAc-1-phosphotransferase results in missorting of lysosomal enzymes and accumulation of non-degradable macromolecules in lysosomes, strongly impairing cellular function. MLII-affected patients have coarse facial features, cessation of statural growth and neuromotor development, severe skeletal abnormalities, organomegaly, and cardiorespiratory insufficiency leading to death in early childhood. MLIII alpha/beta and MLIII gamma are attenuated forms of the disease. Since the identification of the GNPTAB and GNPTG genes, 564 individuals affected by MLII or MLIII have been described in the literature. In this report, we provide an overview on 258 and 50 mutations in GNPTAB and GNPTG, respectively, including 58 novel GNPTAB and seven novel GNPTG variants. Comprehensive functional studies of GNPTAB missense mutations did not only gain insights into the composition and function of the GlcNAc-1-phosphotransferase, but also helped to define genotype-phenotype correlations to predict the clinical outcome in patients.This study was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 125440785‐ SFB877, 395238399‐PO 1539/1‐1 to S. P. and 1240/10‐1 to K. K.), the Brazilian National Council for Scientific and Technological Development (CNPq) to N. F. L. and by unrestricted grants from Cinque per mille e Ricerca Corrente, Ministero della Salute to M. F. and B. Tinfo:eu-repo/semantics/publishedVersio
    corecore