28 research outputs found

    A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome.

    Get PDF
    The identification of the genes associated with chromosomal translocation breakpoints has fundamentally changed understanding of the molecular basis of hematological malignancies. By contrast, the study of chromosomal deletions has been hampered by the large number of genes deleted and the complexity of their analysis. We report the generation of a mouse model for human 5q- syndrome using large-scale chromosomal engineering. Haploinsufficiency of the Cd74-Nid67 interval (containing Rps14, encoding the ribosomal protein S14) caused macrocytic anemia, prominent erythroid dysplasia and monolobulated megakaryocytes in the bone marrow. These effects were associated with defective bone marrow progenitor development, the appearance of bone marrow cells expressing high amounts of the tumor suppressor p53 and increased bone marrow cell apoptosis. Notably, intercrossing with p53-deficient mice completely rescued the progenitor cell defect, restoring common myeloid progenitor and megakaryocytic-erythroid progenitor, granulocyte-monocyte progenitor and hematopoietic stem cell bone marrow populations. This mouse model suggests that a p53-dependent mechanism underlies the pathophysiology of the 5q- syndrome

    The Ews-ERG Fusion Protein Can Initiate Neoplasia from Lineage-Committed Haematopoietic Cells

    Get PDF
    The EWS-ERG fusion protein is found in human sarcomas with the chromosomal translocation t(21;22)(q22;q12), where the translocation is considered to be an initiating event in sarcoma formation within uncommitted mesenchymal cells, probably long-lived progenitors capable of self renewal. The fusion protein may not therefore have an oncogenic capability beyond these progenitors. To assess whether EWS-ERG can be a tumour initiator in cells other than mesenchymal cells, we have analysed Ews-ERG fusion protein function in a cellular environment not typical of that found in human cancers, namely, committed lymphoid cells. We have used Ews-ERG invertor mice having an inverted ERG cDNA cassette flanked by loxP sites knocked in the Ews intron 8, crossed with mice expressing Cre recombinase under the control of the Rag1 gene to give conditional, lymphoid-specific expression of the fusion protein. Clonal T cell neoplasias arose in these mice. This conditional Ews gene fusion model of tumourigenesis shows that Ews-ERG can cause haematopoietic tumours and the precursor cells are committed cells. Thus, Ews-ERG can function in cells that do not have to be pluripotent progenitors or mesenchymal cells

    The LMO2 T-Cell Oncogene Is Activated via Chromosomal Translocations or Retroviral Insertion during Gene Therapy but Has No Mandatory Role in Normal T-Cell Development

    No full text
    The LMO2 gene encodes a LIM-only protein and is a target of chromosomal translocations in human T-cell leukemia. Recently, two X-SCID patients treated by gene therapy to rescue T-cell lymphopoiesis developed T-cell leukemias with retroviral insertion into the LMO2 gene causing clonal T-cell proliferation. In view of the specificity of LMO2 in T-cell tumorigenesis, we investigated a possible role for Lmo2 in T-lymphopoiesis, using conditional knockout of mouse Lmo2 with loxP-flanked Lmo2 and Cre recombinase alleles driven by the promoters of the lymphoid-specific genes Rag1, CD19, and Lck. While efficient deletion of Lmo2 was observed, even in the earliest detectable lymphoid cell progenitors of the bone marrow, there was no disturbance of lymphopoiesis in either T- or B-cell lineages, and in contrast to Lmo2 transgenic mice, there were normal distributions of CD4(−) CD8(−) thymocytes. We conclude that there is no mandatory role for LMO2 in lymphoid development, implying that its specific role in T-cell tumorigenesis results from a reprogramming of gene expression after enforced expression in T-cell precursors
    corecore