58 research outputs found

    CDKN2B Polymorphism Is Associated with Primary Open-Angle Glaucoma (POAG) in the Afro-Caribbean Population of Barbados, West Indies

    Get PDF
    The purpose of this study was to confirm previously reported associations of common variants in or near CDC7/TGFBR3, ZP4, SRBD1, ELOVL5, CAV1/CAV2, TLR4, CDKN2B, CDKN2B-AS1, ATOH7, PLXDC2, TMTC2, SIX1, and CARD10, with primary open angle glaucoma (POAG) in the Afro-Caribbean population of Barbados, West Indies. A total of 437 unrelated subjects from the Barbados Family Study of Open Angle Glaucoma (BFSG), including 272 with POAG and 165 unaffected individuals were included in this study. Eighteen SNPs were genotyped by using the multiplex SNaPshot method. Allelic, genotypic and model-based (dominant, recessive, and additive) associations of the SNPs with POAG were analyzed using Chi-squared tests and logistic regression. SNP rs1063192 (near CDKN2B) was found to be significantly associated with POAG (allelic P = 0.0008, genotypic P = 0.0029), and the minor allele C of rs1063192 was protective against POAG (OR  = 0.39; 95%CI  = 0.22−0.69). Suggestive association was also noted for rs7916697 (near ATHO7, allelic P  = 0.0096, genotypic P = 0.01) with the minor allele being protective (OR  = 0.67; 95% CI  = 0.50−0.91), although this finding did not withstand correction for multiple testing. However, a significant interactive effect on POAG risk was identified between rs1063192 and rs7916697 (P-interaction  = 2.80×10−5). Individuals with the rs1063192 protective genotype CC or CT and also rs7916697 genotypes GG or GA show a significantly decreased risk of POAG (OR = 0.17, 95%CI: 0.07−0.41). Our study confirms the significant association between SNP rs1063192 (CDKN2B, previously shown to influence vertical cup-to-disc ratio and POAG at 9p21) and POAG in the Afro-Caribbean population of Barbados. The minor allele of rs1063192 interacts with that of rs7916697 (ATOH7)) to reduce POAG risk. Our results also suggest that rs1063912 is a common protective variant for POAG in populations of African as well as European descent

    Prostate Cancer Incidence and Mortality in Barbados, West Indies

    Get PDF
    We describe prostate cancer incidence and mortality in Barbados, West Indies. We ascertained all histologically confirmed cases of prostate cancer during the period July 2002 to December 2008 and reviewed each death registration citing prostate cancer over a 14-year period commencing January 1995. There were 1101 new cases for an incidence rate of 160.4 (95% Confidence Interval: 151.0–170.2) per 100,000 standardized to the US population. Comparable rates in African-American and White American men were 248.2 (95% CI: 246.0–250.5) and 158.0 (95% CI: 157.5–158.6) per 100,000, respectively. Prostate cancer mortality rates in Barbados ranged from 63.2 to 101.6 per 100,000, compared to 51.1 to 78.8 per 100,000 among African Americans. Prostate cancer risks are lower in Caribbean-origin populations than previously believed, while mortality rates appeared to be higher than reported in African-American men. Studies in Caribbean populations may assist understanding of disparities among African-origin populations with shared heredity

    Genome-wide association studies in women of African ancestry identified 3q26.21 as a novel susceptibility locus for oestrogen receptor negative breast cancer

    Get PDF
    Multiple breast cancer loci have been identified in previous genome-wide association studies, but they were mainly conducted in populations of European ancestry. Women of African ancestry are more likely to have young-onset and oestrogen receptor (ER) negative breast cancer for reasons that are unknown and understudied. To identify genetic risk factors for breast cancer in women of African descent, we conducted a meta-analysis of two genome-wide association studies of breast cancer; one study consists of 1,657 cases and 2,029 controls genotyped with Illumina's HumanOmni2.5 BeadChip and the other study included 3,016 cases and 2,745 controls genotyped using Illumina Human1M-Duo BeadChip. The top 18,376 single nucleotide polymorphisms (SNP) from the meta-analysis were replicated in the third study that consists of 1,984 African Americans cases and 2,939 controls. We found that SNP rs13074711, 26.5 Kb upstream of TNFSF10 at 3q26.21, was significantly associated with risk of oestrogen receptor (ER)-negative breast cancer (odds ratio [OR]=1.29, 95% CI: 1.18-1.40; P = 1.8 × 10 (-) (8)). Functional annotations suggest that the TNFSF10 gene may be involved in breast cancer aetiology, but further functional experiments are needed. In addition, we confirmed SNP rs10069690 was the best indicator for ER-negative breast cancer at 5p15.33 (OR = 1.30; P = 2.4 × 10 (-) (10)) and identified rs12998806 as the best indicator for ER-positive breast cancer at 2q35 (OR = 1.34; P = 2.2 × 10 (-) (8)) for women of African ancestry. These findings demonstrated additional susceptibility alleles for breast cancer can be revealed in diverse populations and have important public health implications in building race/ethnicity-specific risk prediction model for breast cancer

    Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation.

    Get PDF
    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.This work was supported by NIH fellowship F32 GM106584 (AG), NIH grants R01 MH101244(A.G.), R01 CA188392 (B.P.), U01 CA194393(B.P.), R01 GM107427 (M.L.F.), R01 CA193910 (M.L.F./M.P.) and Prostate Cancer Foundation Challenge Award (M.L.F./M.P.). This study makes use of data generated by the Wellcome Trust Case Control Consortium and the Wellcome Trust Sanger Institute. A full list of the investigators who contributed to the generation of the Wellcome Trust Case Control Consortium data is available on www.wtccc.org.uk. Funding for the Wellcome Trust Case Control Consortium project was provided by the Wellcome Trust under award 076113. This study makes use of data generated by the UK10K Consortium. A full list of the investigators who contributed to the generation of the data is available online (http://www.UK10K.org). The PRACTICAL consortium was supported by the following grants: European Commission's Seventh Framework Programme grant agreement n° 223175 (HEALTH-F2-2009-223175), Cancer Research UK Grants C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135 and The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative Grant: no. 1 U19 CA 148537-01 (the GAME-ON initiative); Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007 and C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defense (W81XWH-10-1-0341), A Linneus Centre (Contract ID 70867902), Swedish Research Council (grant no K2010-70X-20430-04-3), the Swedish Cancer Foundation (grant no 09-0677), grants RO1CA056678, RO1CA082664 and RO1CA092579 from the US National Cancer Institute, National Institutes of Health; US National Cancer Institute (R01CA72818); support from The National Health and Medical Research Council, Australia (126402, 209057, 251533, 396414, 450104, 504700, 504702, 504715, 623204, 940394 and 614296); NIH grants CA63464, CA54281 and CA098758; US National Cancer Institute (R01CA128813, PI: J.Y. Park); Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2–2009; DFNI-B01/28/2012); Cancer Research UK grants [C8197/A10123] and [C8197/A10865]; grant code G0500966/75466; NIHR Health Technology Assessment Programme (projects 96/20/06 and 96/20/99); Cancer Research UK grant number C522/A8649, Medical Research Council of England grant number G0500966, ID 75466 and The NCRI, UK; The US Dept of Defense award W81XWH-04-1-0280; Australia Project Grant [390130, 1009458] and Enabling Grant [614296 to APCB]; the Prostate Cancer Foundation of Australia (Project Grant [PG7] and Research infrastructure grant [to APCB]); NIH grant R01 CA092447; Vanderbilt-Ingram Cancer Center (P30 CA68485); Cancer Research UK [C490/A10124] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge; Competitive Research Funding of the Tampere University Hospital (9N069 and X51003); Award Number P30CA042014 from the National Cancer Institute.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/0.1038/ncomms1097

    Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation

    Get PDF
    Although genome-wide association studies have identified over 100 risk loci that explain similar to 33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.Peer reviewe
    corecore