163 research outputs found

    Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets

    No full text
    Oxygen isotopes were measured in four chondritic hydrated interplanetary dust particles (IDPs) and five chondritic anhydrous IDPs including two GEMS-rich particles (Glass embedded with metal and sulfides) by a combination of high precision and high lateral resolution ion microprobe techniques. All IDPs have isotopic compositions tightly clustered around that of solar system planetary materials. Hydrated IDPs have mass-fractionated oxygen isotopic compositions similar to those of CI and CM carbonaceous chondrites, consistent with hydration of initially anhydrous protosolar dust. Anhydrous IDPs have small 16O excesses and depletions similar to those of carbonaceous chondrites, the largest 16O variations being hosted by the two GEMS-rich IDPs. Coarse-grained forsteritic olivine and enstatite in anhydrous IDPs are isotopically similar to their counterparts in comet Wild 2 and in chondrules suggesting a high temperature inner solar system origin. The small variations in the 16O content of GEMS-rich IDPs suggest that most GEMS either do not preserve a record of interstellar processes or the initial interstellar dust is not 16O-rich as expected by self-shielding models, although a larger dataset is required to verify these conclusions. Together with other chemical and mineralogical indicators, O isotopes show that the parent-bodies of carbonaceous chondrites, of chondritic IDPs, of most Antarctic micrometeorites, and comet Wild 2 belong to a single family of objects of carbonaceous chondrite chemical affinity as distinct from ordinary, enstatite, K- and R-chondrites. Comparison with astronomical observations thus suggests a chemical continuum of objects including main belt and outer solar system asteroids such as C-type, P-type and D-type asteroids, Trojans and Centaurs as well as short-period comets and other Kuiper Belt Objects

    Postcards from Mars: Insights into Martian Geochemical Processes from the Curiosity Rover

    Get PDF
    With the successful landing of the Mars Curiosity Rover in August 2012, we now have the most capable geochemical laboratory ever to travel to another planet roving Mars’ Gale crater. The geochemical instrument suite includes the Chemistry Camera (ChemCam), which uses a laser to vaporize geologic targets and performs atomic emission spectroscopy on the vapor from distances of up to 7m. This provides a geochemical surveying capability that enables rapid identification of unique specimens and accumulation of a large set of rock and fines compositions as the rover traverses. The Alpha Particle X-ray Spectrometer (APXS) provides high quality “bulk” elemental analyses for major, minor and a few trace elements through a touch deployment on the surface of a rock or soil, and is an upgraded version of similar instruments previously flown to Mars. The addition of x-ray diffraction through the Chemistry and Mineralogy (CheMin) instrument and volatile, isotope, and organic analyses with the Sample Analysis at Mars (SAM) instrument suite, give Curiosity the capability to assess the geochemical history of the planet more deeply than previously possible. Both CheMin and SAM accept sieved fines from either Curiosity’s scoop or drill. To date, sampling has occurred at the Rocknest aeolian drift deposit and a fine-grained mudstone called John Klein. At Rocknest, CheMin found a mix of primary igneous minerals and amorphous materials. SAM found that Rocknest fines contain significant bound volatiles that can be released upon heating, largely associated with the amorphous material. Because APXS and ChemCam data support the fines being representative of those found at other sites on Mars, Curiosity results show that martian fines are a good source of water, CO2 and other volatiles that could be leveraged by living organisms, including future human explorers. At John Klein, early results are consistent with an ancient aqueous habitable environment. Analyses of isotopes and organics also provide exciting windows into martian habitability and volatile evolution. These early geochemical results will be discussed

    Language access differentially alters functional connectivity during emotion perception across cultures

    Get PDF
    Introduction It is often assumed that the ability to recognize the emotions of others is reflexive and automatic, driven only by observable facial muscle configurations. However, research suggests that accumulated emotion concept knowledge shapes the way people perceive the emotional meaning of others’ facial muscle movements. Cultural upbringing can shape an individual’s concept knowledge, such as expectations about which facial muscle configurations convey anger, disgust, or sadness. Additionally, growing evidence suggests that access to emotion category words, such as “anger,” facilitates access to such emotion concept knowledge and in turn facilitates emotion perception. Methods To investigate the impact of cultural influence and emotion concept accessibility on emotion perception, participants from two cultural groups (Chinese and White Americans) completed a functional magnetic resonance imaging scanning session to assess functional connectivity between brain regions during emotion perception. Across four blocks, participants were primed with either English emotion category words (“anger,” “disgust”) or control text (XXXXXX) before viewing images of White American actors posing facial muscle configurations that are stereotypical of anger and disgust in the United States. Results We found that when primed with “disgust” versus control text prior to seeing disgusted facial expressions, Chinese participants showed a significant decrease in functional connectivity between a region associated with semantic retrieval (the inferior frontal gyrus) and regions associated with semantic processing, visual perception, and social cognition. Priming the word “anger” did not impact functional connectivity for Chinese participants relative to control text, and priming neither “disgust” nor “anger” impacted functional connectivity for White American participants. Discussion These findings provide preliminary evidence that emotion concept accessibility differentially impacts perception based on participants’ cultural background

    Location-dependent threat and associated neural abnormalities in clinical anxiety

    Get PDF
    Anxiety disorders are characterized by maladaptive defensive responses to distal or uncertain threats. Elucidating neural mechanisms of anxiety is essential to understand the development and maintenance of anxiety disorders. In fMRI, patients with pathological anxiety (ANX, n = 23) and healthy controls (HC, n = 28) completed a contextual threat learning paradigm in which they picked flowers in a virtual environment comprising a danger zone in which flowers were paired with shock and a safe zone (no shock). ANX compared with HC showed 1) decreased ventromedial prefrontal cortex and anterior hippocampus activation during the task, particularly in the safe zone, 2) increased insula and dorsomedial prefrontal cortex activation during the task, particularly in the danger zone, and 3) increased amygdala and midbrain/periaqueductal gray activation in the danger zone prior to potential shock delivery. Findings suggest that ANX engage brain areas differently to modulate context-appropriate emotional responses when learning to discriminate cues within an environment

    Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    Get PDF
    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover

    A Late Episode of Irradiation in the Early Solar System: Evidence from Extinct ^(36)Cl and ^(26)Al in Meteorites

    Get PDF
    Late-formed halogen-rich phases in a refractory inclusion and a chondrule from the Allende meteorite exhibit large ^(36)S excesses that linearly correlate with the chlorine concentration, providing strong evidence in support of the existence of the short-lived nuclide ^(36)Cl (mean life of 0.43 Myr) in the early solar system. The inferred ^(36)Cl/^(35)Cl ratios at the time when these phases formed are very high (~4 Ă— 10^(-6)) and essentially the same for the inclusion and the chondrule and confirm the earlier report of ^(36)S excess in another meteorite. In addition, the ^(36)Cl is decoupled from ^(26)Al. The observed and any possible higher levels of ^(36)Cl cannot be the result of a supernova or AGB stellar source but require a late episode of energetic particle bombardment by the early Sun, in support of the arguments based on the previous discovery of ^(10)Be. It is now clear that a blend of several sources is required to explain the short-lived nuclei when the solar system formed

    Integrated Results from Analysis of the Rocknest Aeolian Deposit by the Curiosity Rover

    Get PDF
    The Mars Science Laboratory Curiosity rover spent 45 sols (from sol 56-101) at an area called Rocknest (Fig. 1), characterizing local geology and ingesting its aeolian fines into the analytical instruments CheMin and SAM for mineralogical and chemical analysis. Many abstracts at this meeting present the contextual information and detailed data on these first solid samples analyzed in detail by Curiosity at Rocknest. Here, we present an integrated view of the results from Rocknest - the general agreement from discussions among the entire MSL Science Team

    Possible Detection of Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    Get PDF
    Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N2). However, it has been lost by sputtering and photochemical loss to space [1, 2], impact erosion [3], and chemical oxidation to nitrates [4]. Nitrates, produced early in Mars history, are later decomposed back into N2 by the current impact flux [5], making possible a nitrogen cycle on Mars. It is estimated that a layer of about 3 m of pure NaNO3 should be distributed globally on Mars [5]. Nitrates are a fundamental source for nitrogen to terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but was unable to detect evolved N-containing species by TEGA and the MECA WCL [6]. Nitrates have been tentatively identified in the Nakhla meteorite [7]. The purpose of this work is to determine if nitrates were detected in first solid sample (Rocknest) in Gale Crater examined by the SAM instrument

    Evidence for a Global Martian Soil Composition Extends to Gale Crater

    Get PDF
    The eolian bedform within Gale Crater referred to as "Rocknest" was investigated by the science instruments of the Curiosity Mars rover. Physical, chemical and mineralogical results are consistent with data collected from soils at other landing sites, suggesting a globally-similar composition. Results from the Curiosity payload from Rocknest should be considered relevant beyond a single, localized region with Gale Crater, providing key insights into planetary scale processes

    Habitability Assessment at Gale Crater: Implications from Initial Results

    Get PDF
    Mars Science Laboratory has made measurements that contribute to our assessment of habitability potential at Gale Crater. Campaign organization into a consistent set of measurable parameters allows us to rank the relative habitability potential of sites we study, ultimately laying a foundation for a global context inclusive of past and future Mars mission observations. Chemical, physical, geological and geographic attributes shape environments. Isolated measurements of these factors may be insufficient to deem an environment habitable, but the sum of measurements can help predict locations with greater or lesser habitability potential. Metrics for habitability assessment based on field work at sites sharing features analogous to Mars have previously been suggested. Grouping these metrics helps us to develop an index for their application to habitability assessment. The index is comprised of the weighted values for four groups of parameters, the habitability threshold for each is to be determined
    • …
    corecore