41 research outputs found

    New serological platform for detecting antibodies against Mycobacterium tuberculosis complex in European badgers

    Get PDF
    [EN]European badgers (Meles meles) have been identified as wildlife reservoirs for Mycobacterium bovis in the UK and Ireland, and may also have a role in the epidemiology of animal tuberculosis in other European regions. Thus, detection of M. bovis-infected badgers may be required for the purposes of surveillance and monitoring of disease levels in infected populations. Current serological assays to detect M. bovis infection in live badgers, while rapid and inexpensive, show limited diagnostic sensitivity. Here we describe and evaluate new ELISA platforms for the recognition of the P22 multiprotein complex derived from the purified protein derivative (PPD) of M. bovis. The recognition of IgG against P22 multiprotein complex derived from PPD-B was tested by ELISA in the serum of badgers from the UK, Ireland and Spain. TB infection in the badgers was indicated by the presence of M. bovis in tissues by culture and histology at post-mortem examination and TB-free status was established by repeated negativity in the interferon c release assay (IGRA). In experimentally infected badgers, humoral antibody responses against P22 developed within 45 days post-infection. The ELISA tests showed estimated sensitivity levels of 74–82% in experimentally and naturally infected badgers with specifici-ties ranging from 75% to 100% depending on the badger population tested. The P22 multi-antigen based ELI-SAs provide a sensitive and specific test platform for improved tuberculosis surveillance in badgers.SIThis work was supported by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria of Spain (INIA; RTA2015-00043-C02-02) and the TAVS-CM Programme of the Comunidad de Madrid (S2013/ABI-2747), cofinanced by the FEDER fund ‘A way to build Europe’. This work was partially supported by a FEDER co-funded grant from INIA (RTA2014-00002-C02-01). Jose Antonio Infantes-Lorenzo was supported by an FPU contract-fellowship (Formación de Profesorado Universitario) from the Ministerio de Educación, Cultura y Deporte of the Spanish Government (FPU2013/6000)

    Local Lung Immune Response to Mycobacterium bovis Challenge after BCG and M. bovis Heat-Inactivated Vaccination in European Badger (Meles meles)

    Get PDF
    [EN] Tuberculosis (TB) vaccination could be used as a key part of integrated strategies for the disease’s control if an effective and safe vaccine under field conditions is obtained. Recent studies in Spain have evaluated the protective efficacy of two oral vaccines against experimental challenge with live intra-bronchial Mycobacterium bovis in captive badgers: the live-attenuated M. bovis BCG vaccine (Danish strain) and a heat-inactivated M. bovis (HIMB) vaccine. With the objective of increasing the knowledge of the cellular development progress of infection and generating further tools to discriminate between mild and severe TB lesions between and within animals, the immunopathology of tuberculous lesions was studied to characterize the local immune response (cell type profile) within lung granulomas from control (non-vaccinated), BCG vaccinated and HIMB-vaccinated experimentally infected badgers with M. bovis. Four immunohistochemical protocols, for the specific detection of macrophages, T lymphocytes, B lymphocytes and plasma cells within TB granulomas in formalin fixed sections of the right middle lung lobe (lobe targeted for the M. bovis delivery), were performed. Immunolabelled sections were scanned and five randomly selected areas were analyzed with digital image analysis software. The results were expressed as the proportion of the positively immunolabelled area within the total area of the selected site. Data was analyzed using the statistical analysis software (SAS). In the three treatment groups, macrophages were the most abundant inflammatory cells within the granulomas, followed by B lymphocytes and plasma cells. T lymphocyes were absent in those granulomas. This would suggest a predominance of a non-specific innate response mediated by phagocytic cells over an adaptative humoral immune response. The proportion of macrophages and plasma cells was higher in BCG and HIMB-vaccinated badgers, respectively, suggesting the establishment of an adaptative humoral response in HIMB-vaccinated badgers. The lower bacterial load at the lung level, as well as the volume of lesions in lungs using magnetic resonance imaging in badgers with the HIMB vaccine in relation with local immune response presented, must be highlighted, since it would be an advantage in favor of its use under field conditions in terms of reducing TB transmission and environmental contaminationSIThis work has been funded by Ministerio de Ciencia, Innovación y Universidades (MCIU) and the Agencia Estatal de Investigación (AEI) reference project RTI2018-096010-B-C21 (FEDER co-funded) and, by PCTI 2018–2020 (GRUPIN: IDI2018-000237) and FEDER. Ms. Cristina Blanco Vázquez was granted with a predoctoral fellowship funded by INIA-CCAA (FPI-INIA) (2018 call). Ms. Ileana Z. Martínez was supported by a Fundación Carolina PhD scholarship (2017 call). We have received funds by RTI2018-096010-B-C21 (FEDER co-funded) to cover publication cost

    Protective Effect of Oral BCG and Inactivated Mycobacterium bovis Vaccines in European Badgers (Meles meles) Experimentally Infected With M. bovis

    Get PDF
    [EN] In Europe, badgers (Meles meles) are recognized as major tuberculosis (TB) reservoir hosts with the potential to transmit infection to associated cattle herds. Recent studies in Spain have demonstrated that vaccination with a heat-inactivated Mycobacterium bovis vaccine (HIMB) successfully protects captive wild boar and red deer against progressive disease. The aim of this study was to evaluate the efficacy of two oral vaccines against TB in a badger model: the live-attenuated M. bovis bacillus Calmette-Guérin BCG vaccine (Danish strain) and a HIMB vaccine. Twenty-four badgers were separated in three treatment groups: oral vaccinated with live BCG (108 CFU, n = 5), oral vaccinated with HIMB (107 CFU, n = 7), and unvaccinated controls (n = 12). All badgers were experimentally infected with M. bovis (103 CFU) by the endobronchial route targeting the right middle lung lobe. Throughout the study, clinical, immunological, pathological, and bacteriological parameters of infection were measured. Both vaccines conferred protection against experimental TB in badger, as measured by a reduction of the severity and lesion volumes. Based on these data, HIMB vaccination appears to be a promising TB oral vaccine candidate for badgers in endemic countries.SIThis study was funded by a grant from Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), reference number RTA2014-00002-C02 (FEDER co-funded), the Principado de Asturias, PCTI 2018–2020 (GRUPIN: IDI2018-000237 and FEDER), and Departamento de Desarrollo Económico e Infraestructuras del Gobierno Vasco. This study was also funded by Ministerio de Ciencia, Innovación y Universidades (MCIU), the Agencia Estatal de Investigación (AEI) reference project RTI2018-096010-B-C21 and Fondo Europeo de Desarrollo Regional (FEDER). DEFRA also funded APHA staff for their participation in the study and for the purchase of BCG from Statens Serum Institute (Copenhagen, Denmark).Authors thank Cristina Blanco Vázquez, Miriam Martínez de Egidua, Xeider Gerrikagoitia, Valentin Wacheux, Amaia Etxezarreta, Olalla Torrontegui, Si Palmer, Bernat Pérez de Val, and Enric Vidal for their collaboration during the processing of samples, Gareth Williams for providing BCG and Colin Birch for helping in calculating the disease burden scores. Authors also thank Kevin P. Dalton for critically reviewing the manuscript

    Efficacy of heat-inactivated Mycobacterium bovis vaccine delivered to European badgers (Meles meles) through edible bait

    Get PDF
    [EN] Badgers (Meles meles) are a major tuberculosis (TB) reservoir in Europe, with the potential to transmit infection to cattle. Here we assessed whether a recently described oral tuberculosis vaccine based on heat-inactivated Mycobacterium bovis (HIMB), delivered as edible baits, can protect badgers from infection. Eight badgers were given individually five baits, each one consisting of a ball of peanut butter, natural peanut and oat flakes including a dose of the vaccine containing 5 × 107 colony-forming units. In parallel, a control group of seven badgers did not receive the vaccine. One month and a half later a second dose of the vaccine was offered to the vaccinated group. Ninety-four days after the second dose, all badgers were challenged with M. bovis (103 colony-forming units per animal) delivered endobronchially to the right middle lung lobe. Clinical, immunological, pathological and bacteriological variables were measured throughout the whole study to assess the efficacy of the vaccine. Two vaccinated animals showed high bacterial load of M. bovis and worsening of pathological lesions of TB. Conversely, the other six vaccinated animals showed slight improvement in bacterial load and pathology with respect to the control group. These results suggest that delivering the TB vaccine via food bait can partially protect wild badger populations, although vaccination can lead to either protection or tolerization, likely depending on the animal's immune status and general condition at the time of vaccination. Further optimization of the vaccination trial/strategy is needed to reduce the rate of tolerization, such as altering vaccine dose, number of doses, type of bait, use of adjuvants or route of administration.S

    Experimental Infection of Captive Red Foxes (Vulpes vulpes) with Mycobacterium bovis

    Get PDF
    [EN] In Europe, animal tuberculosis (TB) due to Mycobacterium bovis involves multi-host communities that include cattle and wildlife species, such as wild boar (Sus scrofa), badgers (Meles meles) and red deer (Cervus elaphus). Red fox (Vulpes vulpes) infections have also been recently reported in some TB endemic regions in the Iberian Peninsula and France, with some of the infected animals shedding M. bovis in urine and feces. In order to understand the pathogenesis of M. bovis infection in foxes and the associated risk of transmission, 12 captive foxes (6 females and 6 males) were inoc-ulated orally with 2 × 107 colony-forming units of a French field isolate of M. bovis. Clinical samples (urine, feces and oropharyngeal swabs) were collected every four weeks and tested for molecular diagnosis and bacteriology. Serological responses were measured by IDEXX M. bovis Ab Test and Multi Antigen Print Immunoassay (MAPIA). At a post-mortem examination performed 12 weeks post infection (wpi), tissues were tested for the presence of M. bovis and associated gross and microscopic TB-like lesions. M. bovis was detected by PCR in bladder swabs of 3 animals at 12 wpi. It was also detected pre-mortem at different time points of the experiment in the oropharyngeal mu-cus of three individuals and in the feces of nine foxes, with two of them confirmed by bacteriology. All 12 foxes had at least 4 PCR positive samples (out of the 23 tested), and all but 1 fox had at least 1 culture positive sample. The culture negative fox was PCR positive in both retropharyngeal and mesenteric lymph nodes, in line with the results of the other animals. Seroconversion was observed in all foxes except one during the experiment, and in nine at the final time point. No gross visible lesions were found in any animal at the post-mortem examination. The histology showed small granulomas within the lymph nodes, tonsils, liver and lungs from eight animals, with the presence of few acid-fast bacilli. These results confirmed that all orally-infected foxes developed mild TB lesions but they were able to shed mycobacteria in about 75% of cases, 1 month post-infection (9 out 12 foxes). These results show that it is possible to induce typical TB infection experimentally in captive foxes, with measurable M. bovis excretion; such an experimental system could be useful for future evaluations of diagnostics and vaccines in this speciesSIThe French Ministry of Agriculture mainly financed the sampling and the analyses in the framework of the RFSA call on TB projects (Anses-DGAl credit agreement RFSA 2017-326). The animals and the running cost of the BSL3 facilities and technical resources were financed by the European Commission in the context of Horizon 2020?Vetbionet Transnational Access Activities (TNA) call. This work is also partially the result of the I+D+i research project RTI2018-096010-B-C21, funded by the Spanish MCIN/AEI/10.13039/501100011033/ Ministry of Science, Innovation and the European Regional Development Funds (FEDER Una manera de hacer Europa), and of PCTI 2021? 2023 (GRUPIN: IDI2021-000102) funded by Principado de Asturias and FEDE

    A combined measure of tuberculous lesions for assessing the efficacy of vaccination against tuberculosis (Mycobacterium bovis) in European badgers (Meles meles) supports the 3Rs principle of reduction

    No full text
    Background An oral vaccine is a potential tool to tackle the reservoir of Mycobacterium bovis in European badgers (Meles meles), which contributes to tuberculosis of cattle in the British Isles. Inferences about vaccine protection against experimental challenge with M. bovis depend on the measurement of tuberculosis. Assessment of tuberculosis in larger species, such as badgers, is typically based on the tuberculous lesions visible at post-mortem examination and histopathology. We have developed a robust scoring system for tuberculous lesions by combining several parallel measures, which we call the “disease burden score” (DBS). Methods Alternative scoring systems were compared within a regression analysis applied to observations from a total of 168 badgers from eight studies, including 107 badgers subjected to vaccination treatment and 61 non-vaccinated controls. The analysis included incidental observations that were recorded from each badger as potential covariate factors explaining some of the variation among animals sourced from the wild. Results DBS was found to be the most accurate and reliable of the scoring systems compared. By taking account of significant covariates affecting disease, application of the DBS reduced residual variance by 22.9%. A previously used measure, based on assessment of visible lesions, was suboptimal due to non-uniform variance that increased with expected value, although square root transformation addressed this issue. The covariate model fitted to DBS included sex (males had higher DBS), weight (negatively associated with DBS) and immunological evidence of prior exposure to Mycobacterium avium (positively associated with DBS). Conclusions We identified improved measures of tuberculous disease derived from data already collected. We also demonstrated that the proper scaling of measurements of disease in such models is necessary and can be determined empirically. The covariates which were most strongly associated with the severity of disease are important in experimental studies involving outbred animals with variable background.</p

    Purification and Characterisation of Badger IgA and Its Detection in the Context of Tuberculosis

    Get PDF
    European badgers are a wildlife reservoir of bovine tuberculosis in parts of Great Britain. Accurate diagnosis of tuberculosis in badgers is important for the development of strategies for the control of the disease. Sensitive serological tests for badger TB are needed for reasons such as cost and simplicity. Assay of mucosal IgA could be useful for diagnosing respiratory pathogens such as Mycobacterium bovis and for monitoring the response to mucosal vaccination. To develop an IgA assay, we purified secretory IgA from badger bile, identifying secretory component (SC), heavy chain (HC) and light chain (LC), at 66, 46 and 27 Kda, respectively, on the basis of size comparison with other species. Monoclonal antibodies (mAbs) were generated to purified IgA.We selected two for ELISA development. The detection limit of the IgA-specific mAbs was found to be approximately 20 ng/mL when titrated against purified badger bile. One monoclonal antibody specific for badger IgA was used to detect IgA in serum and tracheal aspirate with specificity to an immunodominant antigen of M. bovis. An M. bovis infection dose-dependent IgA response was observed in experimentally infected badgers. IgA was also detected by immunohistochemistry in the lungs of bTB-infected badgers. With further characterisation, these represent new reagents for the study of the IgA response in badgers

    Seroconversion against antigen MPB83 in badgers (Meles meles) vaccinated with multiple doses of BCG strain Sofia

    No full text
    International audienceSerological diagnosis of Mycobacterium bovis infection in badgers (Meles meles) has relied primarily on antibody recognition of MPB83, a sero-dominant antigen of M. bovis. Most vaccine studies in badgers to date have used the Bacille Calmette-Guerin (BCG) Danish strain, a low producer of MPB83. Due to a supply shortage of the BCG Danish strain, the BCG Sofia SL222 strain has been considered as an alternative vaccine. This strain is a high producer of MPB83 raising the possibility that vaccinated animals will test sero-positive in diagnostic assays that use this antigen. In this study we vaccinated a group of eleven badgers with BCG Sofia SL222 by injection via the intramuscular route and a booster vaccine dose was similarly delivered at 12 weeks and 64 weeks. Primary vaccination did not result in measured detection of antibodies against MPB83 in any badger during the first twelve weeks using serum or whole blood tested by the Dual Path Platform (DPP) VetTB, however, MPB83 antibodies were detected in a semi-quantitative ELISA assay. Following delivery of booster BCG at 12 weeks and 64 weeks, antibody responses against MPB83 were recorded in badgers using whole blood and serum on DPP VetTB and by ELISA. At all time points, vaccination was also associated with the in vitro production of gamma interferon (IFN-γ) following stimulation of lymphocytes with bovine and avian tuberculin (PPD) but not with MPB83 or M. bovis specific antigen CFP-10. The results indicate that serological diagnosis of tuberculosis using tests that target MPB83 may be compromised if badgers are repeatedly vaccinated with BCG Sofia
    corecore