11,001 research outputs found

    Mapping the Dirac point in gated bilayer graphene

    Full text link
    We have performed low temperature scanning tunneling spectroscopy measurements on exfoliated bilayer graphene on SiO2. By varying the back gate voltage we observed a linear shift of the Dirac point and an opening of a band gap due to the perpendicular electric field. In addition to observing a shift in the Dirac point, we also measured its spatial dependence using spatially resolved scanning tunneling spectroscopy. The spatial variation of the Dirac point was not correlated with topographic features and therefore we attribute its shift to random charged impurities.Comment: 3 pages, 3 figure

    Spatially resolved spectroscopy of monolayer graphene on SiO2

    Full text link
    We have carried out scanning tunneling spectroscopy measurements on exfoliated monolayer graphene on SiO2_2 to probe the correlation between its electronic and structural properties. Maps of the local density of states are characterized by electron and hole puddles that arise due to long range intravalley scattering from intrinsic ripples in graphene and random charged impurities. At low energy, we observe short range intervalley scattering which we attribute to lattice defects. Our results demonstrate that the electronic properties of graphene are influenced by intrinsic ripples, defects and the underlying SiO2_2 substrate.Comment: 6 pages, 7 figures, extended versio

    Gravitational Waves: opening a window on compact objects dynamics

    No full text
    Oral presentationInternational audienc

    Influence of positional correlations on the propagation of waves in a complex medium with polydisperse resonant scatterers

    Get PDF
    We present experimental results on a model system for studying wave propagation in a complex medium exhibiting low frequency resonances. These experiments enable us to investigate a fundamental question that is relevant for many materials, such as metamaterials, where low-frequency scattering resonances strongly influence the effective medium properties. This question concerns the effect of correlations in the positions of the scatterers on the coupling between their resonances, and hence on wave transport through the medium. To examine this question experimentally, we measure the effective medium wave number of acoustic waves in a sample made of bubbles embedded in an elastic matrix over a frequency range that includes the resonance frequency of the bubbles. The effective medium is highly dispersive, showing peaks in the attenuation and the phase velocity as functions of the frequency, which cannot be accurately described using the Independent Scattering Approximation (ISA). This discrepancy may be explained by the effects of the positional correlations of the scatterers, which we show to be dependent on the size of the scatterers. We propose a self-consistent approach for taking this "polydisperse correlation" into account and show that our model better describes the experimental results than the ISA

    2D Magnetic Design and Optimization of a 88-mm Aperture 15 T Dipole for NED

    Get PDF
    The Next European Dipole (NED) activity supported by the European Union aims at the development of a high-performance Nb3_{3}Sn conductor ( c = 1500A mm 2 @15 T, 4.2 K) in collaboration with European industry and at the design of a highfield dipole magnet making use of this conductor. In the framework of the NED collaboration which coordinates the activity of several institutes,CERNhas contributed to the electromagnetic design study of a cos , layer-type superconducting dipole with an 88 mm aperture that is able to reach 15 T at 4.2 K. Part of the optimization process was dedicated to the reduction of the multipole coefficients so as to improve field quality while keeping an efficient peak-field to main-field ratio. In this paper, we present the optimization of the coil cross-section and of the shape of the iron yoke to reduce saturation-induced field errors during ramp. The effects of persistent magnetization currents are also estimated and different methods to compensate persistent-current-induced field distortions are presented

    The Molecular ISM of Dwarf Galaxies on Kiloparsec Scales: A New Survey for CO in Northern, IRAS-detected Dwarf Galaxies

    Full text link
    We present a new survey for CO in dwarf galaxies using the Kitt Peak 12m telescope. We observed the central regions of 121 northern dwarfs with IRAS detections and no known CO emission. We detect CO in 28 of these galaxies and marginally detect another 16, increasing by about 50% the number of such galaxies known to have significant CO emission. The galaxies we detect are comparable in mass to the LMC, although somewhat brighter in CO and fainter in the FIR. Within dwarfs, we find that the CO luminosity, L_CO, is most strongly correlated with the K-band and the far infrared luminosities. There are also strong correlations with the radio continuum and B-band luminosities, and linear diameter. We suggest that L_CO and L_K correlate well because the stellar component of a galaxy dominates the midplane gravitational field and thus sets the pressure of the atomic gas, which controls the formation of H_2 from HI. We compare our sample with more massive galaxies and find that dwarfs and large galaxies obey the same relationship between CO and the 1.4 GHz radio continuum (RC) surface brightness. This relationship is well described by a Schmidt Law with Sigma_RC proportional to Sigma_CO^1.3. Therefore, dwarf galaxies and large spirals exhibit the same relationship between molecular gas and star formation rate (SFR). We find that this result is robust to moderate changes in the RC-to-SFR and CO-to-H_2 conversion factors. Our data appear to be inconsistent with large (order of magnitude) variations in the CO-to-H_2 conversion factor in the star forming molecular gas. [abridged]Comment: 28 pages, 14 figures, 5 tables, ApJ accepte

    Functional Big-step Semantics

    Get PDF
    When doing an interactive proof about a piece of software, it is important that the underlying programming language’s semantics does not make the proof unnecessarily difficult or unwieldy. Both smallstep and big-step semantics are commonly used, and the latter is typically given by an inductively defined relation. In this paper, we consider an alternative: using a recursive function akin to an interpreter for the language. The advantages include a better induction theorem, less duplication, accessibility to ordinary functional programmers, and the ease of doing symbolic simulation in proofs via rewriting. We believe that this style of semantics is well suited for compiler verification, including proofs of divergence preservation. We do not claim the invention of this style of semantics: our contribution here is to clarify its value, and to explain how it supports several language features that might appear to require a relational or small-step approach. We illustrate the technique on a simple imperative language with C-like for-loops and a break statement, and compare it to a variety of other approaches. We also provide ML and lambda-calculus based examples to illustrate its generality

    Anti-malarial ozonides OZ439 and OZ609 tested at clinically relevant compound exposure parameters in a novel ring-stage survival assay

    Get PDF
    BACKGROUND: Drug efficacy against kelch 13 mutant malaria parasites can be determined in vitro with the ring-stage survival assay (RSA). The conventional assay protocol reflects the exposure profile of dihydroartemisinin. METHODS: Taking into account that other anti-malarial peroxides, such as the synthetic ozonides OZ439 (artefenomel) and OZ609, have different pharmacokinetics, the RSA was adjusted to the concentration-time profile of these ozonides in humans and a novel, semi-automated readout was introduced. RESULTS: When tested at clinically relevant parameters, it was shown that OZ439 and OZ609 are active against the Plasmodium falciparum clinical isolate Cam3.I(R539T). CONCLUSION: If the in vitro RSA does indeed predict the potency of compounds against parasites with increased tolerance to artemisinin and its derivatives, then the herein presented data suggest that following drug-pulses of at least 48 h, OZ439 and OZ609 will be highly potent against kelch 13 mutant isolates, such as P. falciparum Cam3.I(R539T)

    Rubidium Rydberg macrodimers

    Full text link
    We explore long-range interactions between two atoms excited into high principal quantum number n Rydberg states, and present calculated potential energy surfaces (PES) for various symmetries of doubly excited ns and np rubidium atoms. We show that the PES for these symmetries exhibit deep (~GHz) potential wells, which can support very extended (~micrometers) bound vibrational states (macrodimers). We present n-scaling relations for both the depth De of the wells and the equilibrium separations Re of these macrodimers, and explore their response to small electric fields and stability with respect to predissociation. Finally, we present a scheme to form and study these macrodimers via photoassociation, and show how one can probe the various \ell-character of the potential wells

    Statistical Properties of Galactic Starlight Polarization

    Full text link
    We present a statistical analysis of Galactic interstellar polarization from the largest compilation available of starlight data. The data comprises ~ 9300 stars of which we have selected ~ 5500 for our analysis. We find a nearly linear growth of mean polarization degree with extinction. The amplitude of this correlation shows that interstellar grains are not fully aligned with the Galactic magnetic field, which can be interpreted as the effect of a large random component of the field. In agreement with earlier studies of more limited scope, we estimate the ratio of the uniform to the random plane-of-the-sky components of the magnetic field to be B_u/B_r = 0.8. Moreover, a clear correlation exists between polarization degree and polarization angle what provides evidence that the magnetic field geometry follows Galactic structures on large-scales. The angular power spectrum C_l of the starlight polarization degree for Galactic plane data (|b| < 10 deg) is consistent with a power-law, C_l ~ l^{-1.5} (where l ~ 180 deg/\theta is the multipole order), for all angular scales \theta > 10 arcmin. An investigation of sparse and inhomogeneous sampling of the data shows that the starlight data analyzed traces an underlying polarized continuum that has the same power spectrum slope, C_l ~ l^{-1.5}. Our findings suggest that starlight data can be safely used for the modeling of Galactic polarized continuum emission at other wavelengths.Comment: 31 pages, 11 figures. Minor corrections and some clarifications included. Matches version accepted for publication by the Astrophysical Journa
    • …
    corecore