152 research outputs found

    NF-kappa B genes have a major role in Inflammatory Breast Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>IBC (Inflammatory Breast cancer) is a rare form of breast cancer with a particular phenotype. New molecular targets are needed to improve the treatment of this rapidly fatal disease. Given the role of NF-κB-related genes in cell proliferation, invasiveness, angiogenesis and inflammation, we postulated that they might be deregulated in IBC.</p> <p>Methods</p> <p>We measured the mRNA expression levels of 60 NF-κB-related genes by using real-time quantitative RT-PCR in a well-defined series of 35 IBCs, by comparison with 22 stage IIB and III non inflammatory breast cancers. Twenty-four distant metastases of breast cancer served as "poor prognosis" breast tumor controls.</p> <p>Results</p> <p>Thirty-five (58%) of the 60 NF-κB-related genes were significantly upregulated in IBC compared with non IBC. The upregulated genes were NF-κB genes (<it>NFKB1</it>, <it>RELA</it>, <it>IKBKG</it>, <it>NFKBIB</it>, <it>NFKB2</it>, <it>REL</it>, <it>CHUK</it>), apoptosis genes (<it>MCL1L</it>, <it>TNFAIP3/A20</it>, <it>GADD45B</it>, <it>FASLG</it>, <it>MCL1S</it>, <it>IER3L</it>, <it>TNFRSF10B/TRAILR2</it>), immune response genes (<it>CD40</it>, <it>CD48</it>, <it>TNFSF11/RANKL</it>, <it>TNFRSF11A/RANK</it>, <it>CCL2/MCP-1</it>, <it>CD40LG</it>, <it>IL15</it>, <it>GBP1</it>), proliferation genes (<it>CCND2</it>, <it>CCND3</it>, <it>CSF1R</it>, <it>CSF1</it>, <it>SOD2</it>), tumor-promoting genes (<it>CXCL12</it>, <it>SELE</it>, <it>TNC</it>, <it>VCAM1</it>, <it>ICAM1</it>, <it>PLAU/UPA</it>) or angiogenesis genes (<it>PTGS2/COX2</it>, <it>CXCL1/GRO1</it>). Only two of these 35 genes (<it>PTGS2/COX2 </it>and <it>CXCL1/GRO1</it>)were also upregulated in breast cancer metastases. We identified a five-gene molecular signature that matched patient outcomes, consisting of <it>IL8 </it>and <it>VEGF </it>plus three NF-κB-unrelated genes that we had previously identified as prognostic markers in the same series of IBC.</p> <p>Conclusion</p> <p>The NF-κB pathway appears to play a major role in IBC, possibly contributing to the unusual phenotype and aggressiveness of this form of breast cancer. Some upregulated NF-κB-related genes might serve as novel therapeutic targets in IBC.</p

    Identification of potential prognostic biomarkers for node-negative breast tumours by proteomic analysis: a multicentric 2004 national PHRC study

    Get PDF
    We used a 2D-electrophoresis (2-DE) proteomic approach to identify novel biomarkers in node-negative breast cancers. This retrospective study focused on a population of patients with ductal pN0M0 tumours. A subset of patients who developed metastases and in whose tumours were found high levels of uPA and PAI-1 (metastatic relapse, MR: n=20) were compared to another subset in whom no metastatic relapse occurred and whose tumours were found to have low levels of uPA and PAI-1 (no relapse, NR: n=21). We used a 2-DE coupled with MS approach to screen cytosol fractions using two pH-gradient scales, a broad scale (3.0-11.0) and a narrower scale focussing in on a protein rich region (5.0-8.0). This study was conducted on 41 cytosol specimens analyzed in duplicate on two platforms. The differential analysis of more than 2,000 spots in 2-DE gels, obtained on the two platforms, allowed the identification of 13 proteins which were confirmed by western blotting. Two proteins, GPDA and FABP4 were down-regulated in the MR subset whereas all the others were up-regulated. An in silico analysis revealed that GMPS (GUAA), GAPDH (G3P), CFL1 (COF1) and FTL (FRIL), the most informative genes, displayed a proliferation profile (high expression in basal-like, HER2+ and luminal B molecular subtypes). Inversely, similar to FABP4, GPD1 [GPDA] displayed a high expression in luminal A subtype, a profile characteristic of tumour suppressor genes. Despite the small size of our cohort, the 2-DE analysis gave interesting results which were confirmed by the in silico analysis showing that some of the corresponding genes had a strong prognostic impact in breast cancer, mostly because of their link with proliferation: GMPS, GAPDH, FTL and GPD1. A validation phase on a larger cohort is now needed before these biomarkers could be considered for use in clinical practice

    NEFL mRNA Expression Level Is a Prognostic Factor for Early-Stage Breast Cancer Patients

    Get PDF
    Neurofilament, light polypeptide (NEFL) was demonstrated to be ectopically expressed in breast cancer tissues and decreased in lymph node metastases compared to the paired primary breast cancers in our previous study. Moreover, in several studies, NEFL was regarded as a tumor suppressor gene, and its loss of heterozygosity (LOH) was related to carcinogenesis and metastasis in several types of cancer. To explore the role of NEFL in the progression of breast cancer and to evaluate its clinical significance, we detected the NEFL mRNA level in normal breast tissues, primary breast cancer samples and lymph node metastases, and then analyzed the association between the NEFL expression level and several clinicopathological parameters and disease-free survival (DFS). NEFL mRNA was found to be expressed in 92.3% of breast malignancies and down-regulated in lymph node metastases compared to the paired primary tumors. NEFL mRNA level was lower in primary breast cancers with positive lymph nodes than in cancers with negative lymph nodes. Moreover, a low expression level of NEFL mRNA indicated a poor five-year DFS for early-stage breast cancer patients. Thus, NEFL mRNA is ectopically expressed in breast malignancies and could be a potential prognostic factor for early-stage breast cancer patients

    Update on inflammatory breast cancer

    Get PDF
    Inflammatory breast cancer (IBC) is both the least frequent and the most severe form of epithelial breast cancer. The diagnosis is based on clinical inflammatory signs and is reinforced by pathological findings. Significant progress has been made in the management of IBC in the past 20 years. Yet survival among IBC patients is still only one-half that among patients with non-IBC. Identification of the molecular determinants of IBC would probably lead to more specific treatments and to improved survival. In the present article we review recent advances in the molecular pathogenesis of IBC. A more comprehensive view will probably be obtained by pan-genomic analysis of human IBC samples, and by functional in vitro and in vivo assays. These approaches may offer better patient outcome in the near future

    A refined molecular taxonomy of breast cancer

    Get PDF
    The current histoclinical breast cancer classification is simple but imprecise. Several molecular classifications of breast cancers based on expression profiling have been proposed as alternatives. However, their reliability and clinical utility have been repeatedly questioned, notably because most of them were derived from relatively small initial patient populations. We analyzed the transcriptomes of 537 breast tumors using three unsupervised classification methods. A core subset of 355 tumors was assigned to six clusters by all three methods. These six subgroups overlapped with previously defined molecular classes of breast cancer, but also showed important differences, notably the absence of an ERBB2 subgroup and the division of the large luminal ER+ group into four subgroups, two of them being highly proliferative. Of the six subgroups, four were ER+/PR+/AR+, one was ER−/PR−/AR+ and one was triple negative (AR−/ER−/PR−). ERBB2-amplified tumors were split between the ER−/PR−/AR+ subgroup and the highly proliferative ER+ LumC subgroup. Importantly, each of these six molecular subgroups showed specific copy-number alterations. Gene expression changes were correlated to specific signaling pathways. Each of these six subgroups showed very significant differences in tumor grade, metastatic sites, relapse-free survival or response to chemotherapy. All these findings were validated on large external datasets including more than 3000 tumors. Our data thus indicate that these six molecular subgroups represent well-defined clinico-biological entities of breast cancer. Their identification should facilitate the detection of novel prognostic factors or therapeutical targets in breast cancer

    NF-KappaB expression correlates with apoptosis and angiogenesis in clear cell renal cell carcinoma tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clear cell renal cell carcinoma (ccRCC) is the most frequently encountered tumor in the adult kidney. Many factors are known to take part in the development and progression of this tumor. Nuclear factor kappa B (NF-κB) is a family of the genes that includes five members acting in events such as inflammation and apoptosis. In this study, the role of NF-κB (p50 subunit) in ccRCC and its relation to angiogenesis and apoptosis were investigated.</p> <p>Methods</p> <p>Formalin-fixed and paraffin embedded tissue blocks from 40 patients with ccRCC were studied. Expressions of NF-κB (p50), VEGF, EGFR, bc1-2 and p53 were detected immunohistochemically. The relationship of NF-κB with these markers and clinicopathological findings were evaluated.</p> <p>Results</p> <p>The expression of NF-κB was detected in 35 (85%), VEGF in 37 (92.5%), EGFR in 38 (95%), bc1-2 in 33 (82.5%) and p53 in 13 (32.5%) of 40 ccRCC patients. Statistical analyses revealed a significant relation between NF-κB expression and VEGF (p = 0.001), EGFR (p = 0.004), bc1-2 (p = 0.010) and p53 (p = 0.037). There was no significant correlation between NF-κB and such parameters as tumor grade, stage, age and sex.</p> <p>Conclusion</p> <p>The results of this study indicated that in ccRCC cases NF-κB was associated with markers of angiogenesis and apoptosis such as VEGF, EGFR, bc1-2 and p53. In addition, the results did not only suggest a close relationship between NF-κB and VEGF, EGFR, bc1-2 and p53 in ccRCC, but also indicate that NF-κB was a potential therapeutic target in the treatment of ccRCC resistant to chemotherapy.</p
    • …
    corecore