949 research outputs found

    Exotic Baryons in Two-Dimensional QCD

    Full text link
    Two-dimensional QCD has often been used as a laboratory for studying the full four-dimensional theory, providing, for example, an explicit realization of baryons as solitons. We review aspects of conventional baryons in two-dimensional QCD, including the classical and quantum contributions to their masses. We then discuss the spectrum of exotic baryons in two-dimensional QCD, commenting on the solitonic radius inferred from the excitation spectrum as well as the two-dimensional version of the Goldberger-Treiman relation relating meson couplings to current matrix elements. Two-dimensional QCD provides strong overall support to the chiral-soliton picture for the structure of normal and exotic baryons in four dimensions.Comment: 15 pages latex, no figure

    Energy balance closure for the LITFASS-2003 experiment

    Get PDF
    In the first part, this paper synthesises the main results from a series of previous studies on the closure of the local energy balance at low-vegetation sites during the LITFASS-2003 experiment. A residual of up to 25% of the available energy has been found which cannot be fully explained either by the measurement uncertainty of the single components of the surface energy balance or by the length of the flux-averaging period. In the second part, secondary circulations due to heterogeneities in the surface characteristics (roughness, thermal and moisture properties) are discussed as a possible cause for the observed energy balance non-closure. This hypothesis seems to be supported from the fluxes derived from area-averaging measurement techniques (scintillometers, aircraft)

    Pr magnetism and its interplay with the Fe spin density wave in PrFeAsO

    Full text link
    We have studied the magnetism of the Pr3+ ions in PrFeAsO_1-xF_x (x = 0; 0.15) and its interaction with the Fe magnetic order (for x = 0). Specific heat data confirm the presence of a first excited crystal electric field (CEF) level around 3.5 meV in the undoped compound PrFeAsO. This finding is in agreement with recent neutron scattering experiments. The doped compound is found to have a much lower first CEF splitting of about 2.0 meV. The Pr ordering in PrFeAsO gives rise to large anomalies in the specific heat and the thermal expansion coefficient. In addition, a field-induced transition is found at low temperatures that is most pronounced for the magnetostriction coefficient. This transition, which is absent in the doped compound, is attributed to a reversal of the Fe spin canting as the antiferromagnetic Pr order is destroyed by the external magnetic field.Comment: 8 pages, 6 figure

    Optical Study of LaO_0.9F_0.1FeAs: Evidence for a Weakly Coupled Superconducting State

    Full text link
    We have studied the reflectance of the recently discovered superconductor LaO_0.9F0.FeAs in a wide energy range from the far infrared to the visible regime. We report on the observation of infrared active phonons, the plasma edge (PE) and possible interband transitions. On the basis of this data and the reported in-plane penetration depth lambda_L(0) about 254 nm [H. Luetkens et al., Phys. Rev. Lett. v. 101, 0970009 (2008)] a disorder sensitive relatively small value of the total electron electron-boson coupling constant lambda_tot=lambda_e-ph+lambda_e-sp ~ 0.6 +- 0.35 can be estimated adopting an effective single-band picture.Comment: Changed title, updated references, final published versio

    Light hadron and diquark spectroscopy in quenched QCD with overlap quarks on a large lattice

    Full text link
    A simulation of quenched QCD with the overlap Dirac operator has been completed using 100 Wilson gauge configurations at beta = 6 on an 18^3 x 64 lattice and at beta = 5.85 on a 14^3 x 48 lattice, both in Landau gauge. We present results for light meson and baryon masses, meson final state "wave functions," and other observables, as well as some details on the numerical techniques that were used. Our results indicate that scaling violations, if any, are small. We also present an analysis of diquark correlations using the quark propagators generated in our simulation.Comment: 28 LaTeX pages, 41 figures, v2: minor updates, version published in JHE

    Field and Temperature Dependence of the Superfluid Density in LaO_{1-x}F_xFeAs Superconductors: A Muon Spin Relaxation Study

    Full text link
    We present zero field and transverse field \muSR experiments on the recently discovered electron doped Fe-based superconductor LaO_{1-x}F_xFeAs. The zero field experiments on underdoped (x=0.075) and optimally doped (x=0.1) samples rule out any static magnetic order above 1.6 K in these superconducting samples. From transverse field experiments in the vortex phase we deduce the temperature and field dependence of the superfluid density. Whereas the temperature dependence is consistent with a weak coupling BCS s-wave or a dirty d-wave gap function scenario, the field dependence strongly evidences unconventional superconductivity. We obtain the in-plane penetration depth of \lambda_{ab} (0) = 254(2)nm for LaO_{0.9}F_{0.1}FeAs and \lambda_{ab} (0) = 364(8)nm for LaO_{0.925}F_{0.075}FeAs. Further evidence for unconventional superconductivity is provided by the ratio of T_c versus the superfluid density, which is close to the Uemura line of hole doped high-T_c cuprates.Comment: 5 pages, 5 figure

    Universal linear-temperature dependence of static magnetic susceptibility in iron-pnictides

    Full text link
    A universal linear-temperature dependence of the uniform magnetic susceptibility has been observed in the nonmagnetic normal state of iron-pnictides. This non-Pauli and non-Curie-Weiss-like paramagnetic behavior cannot be understood within a pure itinerant picture. We argue that it results from the existence of a wide antiferromagnetic fluctuation window in which the local spin-density-wave correlations exist but the global directional order has not been established yet.Comment: 4 pages, 2 figure
    corecore