428 research outputs found

    Entropy potential and Lyapunov exponents

    Full text link
    According to a previous conjecture, spatial and temporal Lyapunov exponents of chaotic extended systems can be obtained from derivatives of a suitable function: the entropy potential. The validity and the consequences of this hypothesis are explored in detail. The numerical investigation of a continuous-time model provides a further confirmation to the existence of the entropy potential. Furthermore, it is shown that the knowledge of the entropy potential allows determining also Lyapunov spectra in general reference frames where the time-like and space-like axes point along generic directions in the space-time plane. Finally, the existence of an entropy potential implies that the integrated density of positive exponents (Kolmogorov-Sinai entropy) is independent of the chosen reference frame.Comment: 20 pages, latex, 8 figures, submitted to CHAO

    Non-equilibrium Statistical Mechanics of Anharmonic Crystals with Self-consistent Stochastic Reservoirs

    Full text link
    We consider a d-dimensional crystal with an arbitrary harmonic interaction and an anharmonic on-site potential, with stochastic Langevin heat bath at each site. We develop an integral formalism for the correlation functions that is suitable for the study of their relaxation (time decay) as well as their behavior in space. Furthermore, in a perturbative analysis, for the one-dimensional system with weak coupling between the sites and small quartic anharmonicity, we investigate the steady state and show that the Fourier's law holds. We also obtain an expression for the thermal conductivity (for arbitrary next-neighbor interactions) and give the temperature profile in the steady state

    Finite-size effects on the Hamiltonian dynamics of the XY-model

    Full text link
    The dynamical properties of the finite-size magnetization M in the critical region T<T_{KTB} of the planar rotor model on a L x L square lattice are analyzed by means of microcanonical simulations . The behavior of the q=0 structure factor at high frequencies is consistent with field-theoretical results, but new additional features occur at lower frequencies. The motion of M determines a region of spectral lines and the presence of a central peak, which we attribute to phase diffusion. Near T_{KTB} the diffusion constant scales with system size as D ~ L^{-1.6(3)}.Comment: To be published in Europhysics Letter

    A simple one-dimensional model of heat conduction which obeys Fourier's law

    Full text link
    We present the computer simulation results of a chain of hard point particles with alternating masses interacting on its extremes with two thermal baths at different temperatures. We found that the system obeys Fourier's law at the thermodynamic limit. This result is against the actual belief that one dimensional systems with momentum conservative dynamics and nonzero pressure have infinite thermal conductivity. It seems that thermal resistivity occurs in our system due to a cooperative behavior in which light particles tend to absorb much more energy than the heavier ones.Comment: 5 pages, 4 figures, to be published in PR

    A Framework for Verifiable and Auditable Collaborative Anomaly Detection

    Get PDF
    Collaborative and Federated Leaning are emerging approaches to manage cooperation between a group of agents for the solution of Machine Learning tasks, with the goal of improving each agent's performance without disclosing any data. In this paper we present a novel algorithmic architecture that tackle this problem in the particular case of Anomaly Detection (or classification of rare events), a setting where typical applications often comprise data with sensible information, but where the scarcity of anomalous examples encourages collaboration. We show how Random Forests can be used as a tool for the development of accurate classifiers with an effective insight-sharing mechanism that does not break the data integrity. Moreover, we explain how the new architecture can be readily integrated in a blockchain infrastructure to ensure the verifiable and auditable execution of the algorithm. Furthermore, we discuss how this work may set the basis for a more general approach for the design of collaborative ensemble-learning methods beyond the specific task and architecture discussed in this paper

    Finite thermal conductivity in 1d lattices

    Get PDF
    We discuss the thermal conductivity of a chain of coupled rotators, showing that it is the first example of a 1d nonlinear lattice exhibiting normal transport properties in the absence of an on-site potential. Numerical estimates obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of this model.Comment: 4 pages, 3 postscript figure

    A simulation study of energy transport in the Hamiltonian XY-model

    Full text link
    The transport properties of the planar rotator model on a square lattice are analyzed by means of microcanonical and non--equilibrium simulations. Well below the Kosterlitz--Thouless--Berezinskii transition temperature, both approaches consistently indicate that the energy current autocorrelation displays a long--time tail decaying as t^{-1}. This yields a thermal conductivity coefficient which diverges logarithmically with the lattice size. Conversely, conductivity is found to be finite in the high--temperature disordered phase. Simulations close to the transition temperature are insted limited by slow convergence that is presumably due to the slow kinetics of vortex pairs.Comment: Submitted to Journal of Statistical Mechanics: theory and experimen

    A stochastic model of anomalous heat transport: analytical solution of the steady state

    Full text link
    We consider a one-dimensional harmonic crystal with conservative noise, in contact with two stochastic Langevin heat baths at different temperatures. The noise term consists of collisions between neighbouring oscillators that exchange their momenta, with a rate γ\gamma. The stationary equations for the covariance matrix are exactly solved in the thermodynamic limit (NN\to\infty). In particular, we derive an analytical expression for the temperature profile, which turns out to be independent of γ\gamma. Moreover, we obtain an exact expression for the leading term of the energy current, which scales as 1/γN1/\sqrt{\gamma N}. Our theoretical results are finally found to be consistent with the numerical solutions of the covariance matrix for finite NN.Comment: Minor changes in the text. To appear in Journal of Physics

    Nonequilibrium Invariant Measure under Heat Flow

    Full text link
    We provide an explicit representation of the nonequilibrium invariant measure for a chain of harmonic oscillators with conservative noise in the presence of stationary heat flow. By first determining the covariance matrix, we are able to express the measure as the product of Gaussian distributions aligned along some collective modes that are spatially localized with power-law tails. Numerical studies show that such a representation applies also to a purely deterministic model, the quartic Fermi-Pasta-Ulam chain

    Spatial Relationship of Signatures of Interplanetary Coronal Mass Ejections

    Full text link
    Interplanetary coronal mass ejections (ICMEs) are characterized by a number of signatures. In particular, we examine the relationship between Fe charge states and other signatures during ICMEs in solar cycle 23. Though enhanced Fe charge states characterize many ICMEs, average charge states vary from event to event, are more likely to be enhanced in faster or flare‐related ICMEs, and do not appear to depend on whether the ICME is a magnetic cloud. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87650/2/681_1.pd
    corecore