36 research outputs found

    Enrichment of organic pollutants in the sea surface microlayer (SML) at Terra Nova Bay, Antarctica: influence of SML on superficial snow composition.

    Get PDF
    Concentrations of dissolved and particle-associated n-alkanes, phthalates and polycyclic aromatic hydrocarbons (PAHs) were measured in sea surface microlayer (SML) and sub-surface water (SSL) samples collected in the coastal area of Terra Nova Bay, Antarctica, during the Austral spring 1998/1999. SML concentrations of the selected organic compounds were higher than SSL values and the enrichment factors were greater in the particulate phase than in the dissolved phase. During the same campaign, ‘‘fresh’’ snow samples, collected at different altitudes (from sea level up to 2670 m) near the coast on Mt Melbourne, immediately after a snowy event, were analysed in order to provide more information on air/sea exchange processes. The same classes of organic compounds found in sea water were also present in ‘‘fresh’’ snow samples. The surfactant fluorescent organic matter (SFOM), adsorbed on the microdrop aerosol surface, could be considered the main constituent of the enrichment and the carrier at higher altitudes of organic compounds. In fact, hydrocarbons (n-alkanes and PAHs), which are not surfactants like phthalates, could interact with SFOM and follow the same fate

    The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy)

    No full text
    Levoglucosan was present in all samples and its concentrations showed a pronounced annual cycle with maximum levels in the cold season. The annual percentage of ratios of levoglucosan to OC ranged from 0.04 to 9.75% evidencing a major contribution of biomass burning to the aerosol OC during the winter. In the urban-background site, OC was strongly correlated with EC in winter, suggesting that the major fraction of OC was generated as primary particles along with EC. A background levoglucosan component showed that biomass burning was continuously taking place in all the investigated sites. The biomass burning contribution to the Tuscany aerosol was made up of a background component and an additional component during winter probably due to wood burning for domestic heating
    corecore