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ABSTRACT: The removal of the non-ionic surfactant Triton X-100,

dosed at 30 and 300 mg/L in a pilot-scale subsurface horizontal flow reed

bed, and the aerobic heterotrophic cultivable community associated with the

roots and with the substrate gravel in both absence and presence of Triton X-

100 were investigated. t-Octylphenol (OP) and its mono-, di- and tri-ethoxyl

derivatives, among others, were found in the outlet. A mass balance allowed

us to calculate that approximately 40% of the Triton X-100 metabolites OP

and octylphenol polyethoxylate derivatives flowed out of the reed bed during

the dosage and postdosage experiments. More aerobic heterotrophic

microorganisms adhered to the roots than to the gravel. The appearance

of new strains (Aeromonas, Flavobacterium, and Aquaspirillum) and the

increased presence of others (Pseudomonas) during the dosage of Triton

may be linked to the capacity of these bacteria to adapt to the presence of the

surfactant or to use it as a nourishment. Water Environ. Res., 78, 000 (2006).
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Introduction
Horizontal subsurface flow (SSF-h) reed beds have been

extensively used in many countries for the treatment of urban

wastewater (especially from small communities) (Brix, 1998; Kern

and Idler, 1999; Kowalik et al., 1995; Reed and Brown, 1995;

Vymazal, 1999) and, less frequently, for industrial wastewaters

(Davies and Cottingham, 1994; Chong et al., 1999; Del Bubba et al.,

2004; Knight et al., 1999). Good results have been also obtained in

the treatment of wastewater made synthetically by adding specified

organic compounds (Machate et al., 1996). The interesting results

obtained in the treatment of industrial wastewaters and selected

organic compounds by using constructed wetlands are encouraging

for testing the removal of chemicals of primary importance from

an environmental point-of-view and for which natural purification

has not yet been studied. Among these chemicals, the non-ionic

surfactants alkylphenol polyethoxylates (APEOs) are extensively

used for industrial activities (Ejlertsson et al., 1999). As a

consequence, APEOs and their metabolites are widely diffused in

the environment (Blackburn et al., 1999; Field and Reed, 1996;

Lepri et al., 1997). Among their byproducts, octylphenol (OP),

nonylphenol (NP), and their mono-, di-, and tri-ethoxyl derivatives

are toxic to aquatic life (Field and Reed, 1996), can mimic estrogen,

can be taken up by estrogen receptors (Soto et al., 1991; Tange et al.,

1999), and have the potential to accumulate in the fatty tissues of

aquatic organisms (Blackburn et al., 1999).

Little is known about either the structure of the community or the

functioning of the several strains that are active in the removal

processes of non-ionic surfactants occurring in subsurface flow

(SSF) constructed wetlands (Chong et al., 1999).

Because no field studies about the removal of Triton X-100 (a

commercial mixture of oligomers of 4-t-octylphenoxypolyethoxy-

ethanol) and the identification of microbial genera involved in its

biodegradation have been carried out in natural systems, in the

present research, Triton X-100 was dosed in a pilot-scale SSF-h

reed bed. Two different concentrations (30 and 300 mg/L) of non-

ionic surfactant were tested, allowing for the simulation of mixed

(municipal and industrial) wastewater and of those originating from

surfactant manufacturing and textile industries or commonly

encountered in soil washing and other surfactant-based remediation

technologies (Zhang et al., 1999).

A further aim of this paper has been to characterize the aerobic

heterotrophic cultivable bacterial community associated with the

treatment of Triton X-100, because bacteria belonging to this

community are generally involved in the degradation of several

classes of organic compounds (Amann et al., 1995; Di Cello and

Fani, 1996; Esteve-Nunez et al., 2001; Komancova et al., 2003;

Perei et al., 2001; van Hervijnen et al., 2003) and, particularly, of

alkylphenols and their ethoxylate (EO) derivatives (Fujii et al.,

2000; Soares et al., 2003, Tanghe et al., 2000).

It should also be noted that the use of small pilot plants allows

the study of the removal of very high concentrations of chemicals,

such as those found in industrial wastewater.

Materials and Methods
Site Description. The investigation was carried out from

February 2000 to January 2001, in a SSF-h pilot reed bed (Figure

1). The pilot system treats the outlet of an activated sludge plant that

deals with civil wastewater. Table 1 shows the average composition

of the wastewater after secondary treatment and of wetland effluent

during the period November 1998 to November 1999, in the

absence of Triton X-100 dosage. An Imhoff settling tank (ISEA,

Lodi, Italy) was used to avoid possible clogging phenomena of the

wastewater distribution pipe. The reed bed was created in 1997.

Rhizomes of Phragmites australis that had an initial average

density of 10/m2 were used. The reed bed was completely occupied
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by the root zone during the experiments and was continuously in

operation during the entire study period. The pilot system is made of

sheets of Plexiglas (12 mm thick), placed above ground level and

protected, on the outside, by black movable polyurethane panels (40

mm thick), to prevent algal growth on the interior walls of the cell.

The filling medium was clean gravel (mean grain size 5 8 mm),

while the settling and drainage zones were both 10 cm in length.

These areas were made of clean rubble (Ø 5 8 cm). The depth of

the media was 0.6 m. Three pipes were placed inside the bed at

different distances from the inlet (40, 80, and 120 cm) and at a depth

of 25 cm. The reed bed (basin slope 1%) is located in the

countryside, on the outskirts of Florence (Italy). The length and

width of the system were 1.52 and 0.43 m, respectively; thus, the

system area was 0.65 m2. The average flow through the system was

0.024 m3/d (the dose was preestablished by a peristaltic pump), and

the corresponding hydraulic retention time (HRT) was 5 6 0.4

days. In July and August, when the wetland temperature was as high

as 278C, evapotranspiration phenomena were significant, and a

30 to 40% decrease of the outlet flow was observed; therefore, a

corresponding HRT increase occurred. The pilot plant was sheltered

by a nylon tarpaulin to reduce plant transpiration phenomena and

to avoid any dilution effects resulting from rainwater.

The wetland temperature was measured continuously in situ;

results were recorded every 2 hours. Daily values were the average

of the 12 measurements taken within a 24-hour period.

Dosage of Triton X-100. The dosing of surfactant in the pilot

system was established by aspirating an aqueous solution of the

surfactant (gently stirred by a magnetic stirrer) from a jerry can, by

using a peristaltic pump. The mixing of the inflowing water and

homogenization occurred a short time before entry into the system.

The surfactant was added in increasing doses to acclimate the

microbial community to its presence. In this way, shock situations

that could affect the flora were avoided. Triton X-100 was dosed

at two different concentrations: 30 mg/L for 66 days (February 26

to May 3, 2000) and 300 mg/L for 134 days (May 4 to September

15, 2000); it was therefore possible to verify the removal effi-

ciency of the constructed wetlands by varying the concentrations of

Triton X-100.

Postdosage Study. After the end of the dosage, the pilot plant

was fed with the effluent of the activated sludge plant, and a weekly

monitoring of the OP and octylphenol polyethoxylates (OPEOs)

present in the outlet was carried out. The postdosage study was

terminated 113 days after the end of the 300-mg/L dosing.

Sampling Procedure. Wastewater samples (250-mL grab)

were collected during the Triton X-100 dosage at the inlet, outlet,

and at different distances (40, 80, and 120 cm) from the inlet.

All samples collected before and after the surfactant dosing were

taken 80 cm from the inlet (at the center of the basin). During Triton

X-100 dosing, further samples were collected at 40 and 120 cm

from the inlet. The sampling frequency varied in relation to the

modifications brought about in the system (the addition of two

different quantities of Triton X-100).

To investigate if a release of Triton X-100 metabolites occurred

after the end of the dosage (postdosage study), composite 24-hour

sampling of the effluent wastewater was carried out weekly by a

refrigerated (48C) sampler (Sigma, Milan, Italy).

Differentiated sampling was carried out for both the filling gravel

of the basin and for the Phragmites australis roots; a 7-cm-diameter

corer was used. Care was taken to avoid contamination of the corer.

The aerial part of a reed was cut 5 cm above ground level, and

sampling was carried out by coring a root and soil portion at a depth

of 25 cm and at various distances from the inlet. Then, the root and

soil samples were placed in steril plastic bags, separately.

The first two samplings of gravel and roots (80 cm from the inlet

of the system) were made in February 2000, when the surfactant

dosage had not yet begun.

Chemical Analyses. Sample Filtration. Wastewater samples

were filtered (within 1 hour after sampling) in duplicate through

glass fiber filters (GF/F, Whatman, Maidstone, Kent, United

Kingdom; porosity 0.45 lm,) previously dried at 1058C for 1 hour

and weighed. After filtration, one filter was heated for 1 hour at

1058C and then weighed again to calculate the amount of total

suspended solids (TSS). The other was placed in a drier until

constant weight was reached, and then it was analyzed to evaluate

the content of OPEOs adsorbed on particulate matter.

Extraction of Water Samples. Extraction of OPEOs and OP was

carried out by adding 20 g sodium chloride (NaCl) (Prolabo, Paris,

France) to 20-mL aliquots of filtered samples. These solutions were

then extracted three times with 10-mL portions of chloroform

(Baker, Deventer, Netherlands). The organic extracts were com-

bined, dried over anhydrous sodium sulphate, and made up to

30 mL. The average recovery, calculated for the oligomers of Triton

X-100, was 78 6 3% (n 5 5).

Extraction of Particulate Samples. Extraction of particulate

matter was performed according to Desideri et al. (1988), with some

modifications. The filter was placed in a 20-mL vial, and 1.5 mL

Figure 1—Operational scheme of the pilot system.

Table 1—Mean concentrations 6 standard deviation (n 5
13) of some chemical parameters determined during the
period November 1998 to November 1999 in influent and
effluent of the SSF-h pilot system fed with the outlet of
an activated sludge plant.

In Out

TSS 19 6 10 7 6 4

BOD5 20 6 7 6 6 3

CODT 29 6 3 14 6 2

CODS 20 6 3 9 6 2

Ammonium-nitrogen (N-NH4
1) 5.7 6 2.1 3.3 6 2.6

Nitrous-nitrogen (N-NO2
2) 0.27 6 0.19 0.10 6 0.07

Nitric-nitrogen (N-NO3
2) 3.2 6 2.5 1.2 6 0.8
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water (milliQ, Millipore, Billerica, Massachusetts), 1.5 mL of a

mixture methylene chloride/n-hexane 1:1 v/v, and 0.5 mL methanol

were added. Extraction was performed by means of magnetic

stirring (15 minutes) and centrifugation (10 minutes, 2500 rpm).

The methylene chloride/n-hexane phase was dried over anhydrous

sodium sulphate. The average recovery, calculated for the oligomers

of Triton X-100, was 85 6 4% (n 5 5).

Chromatographic Analyses. The extracts were analyzed using

both reversed-phase high-performance liquid chromatography (RP-

HPLC) and gas chromatography (GC). The RP-HPLC allowed for

the determination of the OPEO oligomers, while GC was a suitable

method for the analysis of OP and those OPEOs with fewer than

eight EO units.

The RP-HPLC analysis was carried out on OPEO derivatives to

obtain chromatographic separation of the oligomers, according to

the method of Zanette et al. (1996), with some modifications, both

in the derivatization and in the chromatographic elution conditions.

The derivatization reaction was performed in a conical tube

according to the following procedure: a 15-mL aliquot of the

organic extract was evaporated to dryness under a gentle stream

of nitrogen. A 50-lL volume of 1-naphthyl isocyanate (Aldrich,

Munich, Germany) was then added to the residue to obtain the

corresponding urethanes. The tube was heated in a water bath at

408C for 30 minutes. The resulting mixture was dissolved in 2.5 mL

acetonitrile for HPLC analysis. The analysis was carried out at

ambient temperature (22 to 258C) using a double-pump liquid

chromatograph (LC-10ADVP, Shimadzu Italia, Milan, Italy)

equipped with a SPD M10AVP diode array detector (Shimadzu

Italia). The detection was performed at k 5 220 nm. A Class VP 4.2

chromatography data system (Shimadzu Italia) was used to make

and handle the chromatograms. The samples were injected to a

reversed-phase C-18 column LC-PAH (Restek, Bellefonte, Penn-

sylvania) by a 20-lL loop, using a 50-lL syringe (Kloehn, Las

Vegas, Nevada). The flowrate was 1 mL/min. The mobile phase was

a mixture of HPLC-grade acetonitrile and water (CH3CN/H2O)

(Baker, Deventer, Netherlands). The elution conditions were as

follows:

� 0- to 10-minute isocratic elution with 60% acetonitrile;

� 10- to 25-minute linear gradient from 60 to 75% acetonitrile,

� 25- to 40-minute isocratic elution with 75% acetonitrile,

� 40- to 60-minute linear gradient from 75 to 100% acetonitrile,

and

� 60- to 70-minute isocratic elution with 100% acetonitrile.

Response factors for the different OPEO oligomers were the same.

Gas chromatographic analysis was carried out according to

Desideri et al. (1998) by using a capillary column CP-SIL 8 CB

Low-Bleed/MS (30 m 3 0.25 mm internal diameter, 0.25-lm

thickness) purchased from Chrompack (New York). The chromato-

graphic peaks were analyzed with a Mega 2-computer system

(Carlo Erba, Milan, Italy), using Spectra Physics software (Spectra

Physics, Mountain View, California). Response factors were

calculated separately for the OP and OPEO oligomers.

A confirmatory high resolution gas chromatographic/mass spec-

trometric analysis was performed as reported by Desideri et al.

(1998). All peaks were identified by using a reference chromato-

gram and by comparing their mass spectra with those reported in the

National Bureau of Standards and National Institute of Standards

and Technology (Gaithersburg, Maryland) libraries.

Quantification Limits. The HPLC quantification limits were the

same for all OPEOs and equal to 0.2 mg/L. The GC quantification

limits for OP and OPEOs with 1 to 7 EO units were included in the

range 0.020 to 0.045 mg/L, depending on their response factors,

which decrease with increasing the length of the EO chain.

Chemical Oxygen Demand Analysis. Chemical oxygen demand

(COD) was determined both on filtered (CODS) and unfiltered (CODT)

samples according to the standard IRSA-CNR method (1981).

Identification of Total Bacterial Load and Bacterial Strains.
Each sample was a pool of two portions of roots or gravel having

the same fresh weight (Sartorius handy-Prokeme H110, Sartorius,

Goettingen, Germany), collected in two different sites, both located

10 cm from the sides of the basin. The gravel samples were

mechanically stirred for 20 minutes in a 0.8% NaCl solution in

distilled water that had been added at a ratio of 1/10 v/v. The roots

were gently washed in the NaCl solution and then placed in a

sonicator bath (Branson Ultrasonics Corporation, Danbury, Con-

necticut) for 10 minutes to remove rhizosphere microorganisms

(Duineveld et al., 1998). The NaCl solution was added to the

samples at a ratio of 1/10 v/v.

The root and gravel suspensions were serially diluted (up to

1024). A 0.1-mL aliquot was taken from the different dilutions and

spread on agar media, in triplicate. The plates were incubated at

248C for up to 7 days. The culture media used were as follows:

� Triptone yeast (TY): maximum culture medium for the

isolation of bacteria (Hatano et al., 1993).

� Triptone yeast crystal violet (TYCV): maximum culture

medium for the isolation of gram-negative bacteria (Hatano

et al., 1993).

� Triptone yeast triton (TYT): culture medium (TY 1 30 mg/L

of Triton X-100) for the isolation of bacteria that can grow in

the presence of Triton X-100 (Fantroussi et al., 1999).

The different typologies of colonies were counted, and each one

was identified by means of the Biolog MicroStation system (Biolog

Inc., Hayward, California) (Heinaru et al., 2000; Johnsen et al.,

1996; Picard et al., 2000). According to the Biolog Reference
Manual (Biolog Inc., 1999), phenotypic identification was per-

formed only if a similarity index value greater than 0.5 (for gram-

negative aerobes at 24 hours incubation) or 0.75 (for gram-positive

aerobes at 6 hours incubation) was observed. For correct use of the

system, each bacterial strain was submitted to gram staining and

microscopic analysis. Additional oxidase and catalase tests were

also carried out. Tryptic soy agar with 5% sheep’s blood (OXOID,

Hampshire, United Kingdom) was used to grow each strain.

Results and Discussion
The 30-mg/L dosage of Triton X-100 began when the reed

(Phragmites australis) bed was still in a state of winter quiescence.

Vegetation of the plants began towards the end of March as the

temperature increased. From the beginning, the development of the

reeds was noteworthy, and no evident sign of vegetative suf-

fering that could be associated with the surfactant was noted. In

the beginning, purified yields were scarce (approximately 20%);

there was a considerable presence of heavy OPEO oligomers in

the final outlet. Thereafter, the situation progressively improved,

and the stabilization in the oligomer composition was reached in

the outlet.

The increase in the concentration of Triton X-100 to 300 mg/L

had no apparent negative effect on the development of the

Phragmites, because a vigorous growth of the reeds and an almost

total absence of withered leaves were observed.

Octylphenol Polyethoxylate Composition at Different

Sacco et al.

June 2006



Distances from the Basin Inlet. The composition of the used

surfactant, as determined by HPLC analysis, is shown in Table 2.

Oligomers with a number of EO units ranging from 1 to 13 were

found, and the mean value was 8.1.

Based on the concentrations of OPEOs and OP found in the water

and in the particulate phase, for both the 30- and 300-mg/L dosages,

relative percentages of the OPEOs and OP present along the basin

were calculated. Percentages of the OPEOs (EO 5 1 to 7) and OP

were plotted as a function of the distance from the basin inlet (see

Figures 2 and 3). Only the oligomers with a number of EO units less

than 7 were reported, because the oligomers with more than 7 EO

units were below detection limits, even at 40 cm from the basin inlet.

Regarding the 30-mg/L dosage (Figure 2), the OPEO oligomers

with 6 and 7 EO units disappeared almost completely, even at

40 cm from the inlet of the basin.

The percentages of OPEO oligomers with 4 and 5 EO units had a

strongly decreasing trend at 80 cm from the inlet. In the outlet, they

were only found at trace levels.

The oligomer with three units showed an almost constant trend

along the first 40 cm of the basin, while, for the diethoxylate, an

increasing trend was observed. Thereafter, they decreased. None-

theless, they continued to exist in appreciable quantities along the

basin; in the outlet, they were present at 2.6 and 6.6%, respectively.

The 4-t-octylphenol and its monoethoxylate derivative had an

increasing trend during the first 40 cm of the basin. Their trends

then diverged. The monoethoxylate reached a maximum value at

40 cm from the inlet. It decreased in a very limited manner from

40 to 120 cm, and then, in the final tract, its decreasing trend was

more evident. The concentration of 4-t-octylphenol increased

along the basin. This compound represented the most abundant

one (70.2%) among those present in the outlet.

The trends of the relative percentages of OPEOs and OP as a

function of the distance from the basin inlet, for the 300-mg/L

dosage (see Figure 3), showed that the OPEOs with 6 and 7 EO units

disappeared along the first 40 cm of the basin and that OPEOs with

3, 4, and 5 EO units strongly decreased in this tract of the bed; at 40

cm, such oligomers were present at lower percentages (1.5, 0.6, and

0.4 %) than that previously observed for the 30 mg/L dosage. Such

behavior is in apparent contrast with the increased concentration of

Triton X-100 and could be attributed to the longer acclimatization

period. In addition, the higher temperatures observed during this

experiment (22 to 278C), with respect to those measured during the

previous one (15 to 188C) could be a contributing factor, which

positively affected the biodegradation rate.

The diethoxylate showed a behavior quite similar to that previ-

ously observed for the monoethoxylate, reaching the maximum

value at 40 cm (8.8%) and then decreasing. The trends of the

monoethoxylate and 4-t-octylphenol were analogous with respect

to the 30-mg/L trends; however, in this case, the monoethoxylate

represented the most abundant oligomer. Monoethoxylate reached

the maximum value at 40 cm (79.1%); it decreased slightly from

40 to 120 cm along the basin and in a flatter way in the final part of

the basin, persisting in the outlet at a very high percentage (67.1%).

For OP, a uniform increasing trend was found; in particular, a

strong increase occurred in the last tract of the bed (outlet percent-

age 30.2), where the above-mentioned decrease of the monoethoxy-

late was observed.

The disappearance of and/or decrease in certain OPEO oligomers

seem to be correlated to increases in others and suggests that each

oligomer could be formed through shortening in the ethoxylic chain

of its superior homologous and that the biodegradation rate of the

oligomers with a number of EO units greater than 3 is higher than

those observed for compounds with shorter EO chains. These

results are in agreement with findings reported elsewhere for the

Table 2—Average percentage composition (n 5 3) of the
different OPEO oligomers determined in the commercial
product Triton X-100.

EO units 1 2 3 4 5 6 7 8 9 10 11 12 13

Triton

X-100 0.7 1.0 1.3 3.6 7.0 12.6 15.9 16.5 12.4 10.6 8.9 5.7 3.8

Figure 2—Mean percentages (n 5 3) of OP and OPEOs found in water and particulate phases at the inlet, at various
distances from the inlet and in the outlet during the Triton X-100 dosage of 30 mg/L. EO 5 number of ethoxylate units.
Determination carried out by GC analysis. Mean total concentrations of the oligomers with 0 to 7 EO units: 0 cm 5 14.92
mg/L; 40 cm 5 6.15 mg/L; 80 cm 5 3.71 mg/L; 120 cm 5 2.44 mg/L; 160 cm 5 1.91 mg/L.

Sacco et al.
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biodegradation pathways of APEOs in activated sludge treatment

plants (Giger et al., 1984; Swisher, 1987; Ying et al., 2002).

Triton X-100 Removal. The sum of the concentrations (in

milligrams per liter) found in liquid and particulate phases of the

effluent for OPEOs and OP under normal operating conditions was

very low compared to the 30- and 300-mg/L dosages of Triton X-

100 (see Table 3). The mean concentration of the oligomers in the

particulate phase was 16 6 7 lg/mg (n 5 9) at the 30-mg/L dosage

and 256 6 68 lg/mg (n 5 22) at the 300 mg/L dosage. Because

the average outlet TSS concentration was 14 6 6 mg/L (n 5 31),

the particulate phase contributed only approximately 12% to the

amount of OP and OPEOs found in the outlet.

These findings clearly indicate a high level of efficiency in the

overall removal of the dosed surfactant, which could be attributed to

biodegradation processes or may also be a consequence of sorption

phenomena by the substrate gravel and organic and inorganic matter

present inside the reed bed.

Analysis of the effluent wastewater after the end of the dosage

(when the reed bed was fed with wastewater devoid of Triton X-

100) was carried out to investigate if the sorption processes were

reversible and, therefore, if a release of OPEOs and OP occurred.

Mono-, di-, and triethoxylate oligomers were found in the effluent

(see Figure 4). For any oligomer, a decreasing trend was observed

with increasing time. The monoethoxylate showed an almost expo-

nential decreasing trend (R2 5 0.96), while the others decreased

linearly (R2 5 0.92 to 0.96). The most abundant compound was the

monoethoxylate, which was present at significant concentrations

(4 mg/L) even 113 days after the end of the dosage, when the

monitoring was terminated. Diethoxylate showed concentration

levels of approximately 4 mg/L during the first month of postdosage

and then decreased quite homogeneously, reaching concentrations

less than 1 mg/L after 97 days. Finally, triethoxylate was always

present at concentrations less than 1 mg/L and disappeared from the

effluent 70 days after the end of the dosage period.

The OP was abundant in the beginning of the postdosage study

(approximately 8 mg/L) and persisted at concentrations higher than

5 mg/L for approximately 50 days after the end of the dosage. Its

concentration was found to be less than 1 mg/L 105 days after

the end of the dosage period.

A mass balance of OP and OPEOs was performed by expressing

concentration data (milligrams per liter) as mass units (millimoles).

Millimoles of OP and OPEOs dosed in the inlet and those present

in the outlet during the entire dosage period were calculated by

multiplying mean concentration values determined in the inlet and

in the outlet (see Table 2) by the hydraulic loading, by the duration

of the dosage experiments (66 and 134 days for the 30- and 300-mg/

L dosed concentrations, respectively), and by mean molecular

masses of the mixtures of oligomers present in the influent and

Figure 3—Mean percentages (n 5 3) of OP and OPEOs found in water and particulate phases at the inlet, at various
distances from the inlet and in the outlet during the Triton X-100 dosage of 300 mg/L. EO 5 number of ethoxylate units.
Determination carried out by GC analysis. Total concentrations of oligomers with 0 to 7 EO units: 0 cm 5 134.81 mg/L;
40 cm 5 66.60 mg/L; 80 cm 5 51.27 mg/L; 120 cm 5 40.35 mg/L; 160 cm 5 32.78 mg/L.

Table 3—Inlet and outlet concentrations (mg/L) of OPEOs
and OP in the influent and effluent wastewater. The
reported values are mean 6 standard deviation: n 5 9 and
22 for 30- and 300-mg/L dosages, respectively. bql 5
below quantification limits.

OPEOs

oligomers

30 mg/L 300 mg/L

Inlet Outlet Inlet Outlet

EO 5 0 — 1.1 6 0.2 — 8.4 6 0.6

EO 5 1 0.3 6 0.1 0.4 6 0.2 1.3 6 0.2 22.8 6 1.1

EO 5 2 0.5 6 0.2 0.2* 2.4 6 0.2 0.5 6 0.2

EO 5 3 0.8 6 0.2 bql 5.7 6 0.8 0.2*
EO 5 4 1.8 6 0.3 bql 14.8 6 1.2 0.2*
EO 5 5 2.6 6 0.4 bql 27.1 6 1.4 0.2*
EO 5 6 3.9 6 0.6 bql 38.6 6 1.3 bql

EO 5 7 4.7 6 0.5 bql 46.8 6 1.6 bql

EO5 8 5.4 6 0.8 bql 50.6 6 0.8 bql

EO 5 9 3.5 6 0.4 bql 35.7 6 1.2 bql

EO 5 10 2.9 6 0.3 bql 29.1 6 0.9 bql

EO 5 11 2.4 60.5 bql 21.3 6 1.1 bql

EO 5 12 1.6 6 0.4 bql 15.3 6 0.7 bql

EO 5 13 1.2 6 0.2 bql 9.1 6 0.8 bql

Total 31.6 6 4.9 1.7 6 0.4 297.8 6 12.2 32.3 6 1.9

* HPLC quantification limit.
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effluent. The amounts of oligomers flowing out from the reed bed

during the postdosage period were computed by expressing the

postdosage concentration data reported in Figure 4 as millimoles per

day. They were plotted as a function of time (figure not shown),

obtaining the same trend reported in Figure 4. The regression curves

best fitting these experimental data delimit an area that represents

the total amounts of millimoles released by the pilot plant during

the entire postdosage period. Such amounts can be easily calculated

by integration of the regression equations.

The amounts of OPEO oligomers dosed in the inlet and of OP and

OPEOs found in the outlet during both the Triton X-100 dosage and

postdosage period are reported in Table 4. The mass of Triton X-100

dosed in the pilot-scale reed bed was approximately 1800 millimoles.

The amount of OP and OPEOs globally determined in the effluent

during the entire study period was approximately 730 millimoles.

Thus, a total of approximately 40% of the non-ionic surfactant flowed

out of the plant during the dosage and postdosage experiments.

Regarding the fate of the remaining 60% of Triton X-100, the forma-

tion of metabolites different from OP and OPEOs with 1 to 3 EO units

and the ultimate degradation of the surfactant can be hypothesized.

In fact, APEOs carboxylated on the ethoxylic chain and/or on the

alkyl chain have been identified as biotransformation products of

APEOs (Di Corcia and Samperi, 1994; Di Corcia et al., 1998).

The comparison between effluent CODT experimental data

(obtained at a Triton X-100 dosage of 300 mg/L) and theoretical

COD (calculated on the basis of the OP and OPEO concentrations

found in the outlet) can give further important information about the

fate of Triton X-100. Theoretical COD (mean 89 mg/L, range 80 to

97 mg/L) accounted for 78% of experimental CODT (mean 114 mg/

L, range 101 to 126 mg/L). Because the background COD (as

estimated from the data collected during the period November 1998

to November 1999; see Table 1) accounted for 12% of experimental

CODT, it can be deduced that the effluent CODT measured during

the Triton X-100 dosage at 300 mg/L is almost completely a result

of OP and OPEOs.

Aerobic Heterotrophic Culturable Bacterial Load in
Relation to the Dosage of Triton X-100. The graphs shown in

Figures 5 (microorganisms adhered to the roots) and 6 (microor-

ganisms adhered to the filling medium) illustrate the trend of the

bacterial load in relation to the presence/absence of Triton X-100.

For all samples, the roots showed load bacterial values that were

higher by at least one log factor when compared with those recorded

in the substrate gravel. Within the same culture media, the samples

collected before the beginning of surfactant dosing showed similar

values of bacterial load. This is in agreement with the almost

identical temperatures (5 to 88C) registered during this sampling

period and points out the slight variability of the results because of

the procedures of sampling and quantification of microorganisms.

A decreasing trend in the number of bacteria (incubated on TY

and TYCV culture media) adhered to the roots was observed in

relation to the 30-mg/L dosage of Triton X-100 (see Figure 5). This

decrease in the number of microorganisms may be the result of a

toxic effect of surfactant towards microbial flora or of an

unfavorable selection of specific strains. The microbial flora, in

fact, might not yet have adapted to the presence of Triton X-100,

which is a well-known antibacterial product and has been found to

inhibit or reduce the biodegradation of several molecules (Stellmack

et al., 1998; Van Ginkel, 1996; Willundsen and Karlson, 1998).

The number of bacteria growing on TYT culture medium before

the Triton X-100 dosage was less than that measured in the other

media—particularly in TY, which showed a bacterial load one log

higher (Figure 5). During the 30-mg/L dosage, bacterial load TYT

was increasing and more similar to that of the TY. This suggests

Figure 4—Sum of concentrations found in the effluent wastewater and particulate matter for OPEOs and OP during
the postdosage period. EO 5 number of ethoxylate units.

Table 4—Millimoles of OPEO oligomers dosed in the inlet
and of OP and OPEOs found in the outlet both during the
Triton X-100 dosages and the postdosage period.

Inlet Outlet

Triton X-100 dosage 30 mg/L 89.3 9.5

Triton X-100 dosage 300 mg/L 1709 415.5

Postdosage — 303.5
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that the number of those bacteria that can grow in the presence of

Triton X-100 is increasing.

A microbial load peak (see Figure 5) was registered for bacteria

adhering to the roots (independently of the culture media used) in

correspondence with the 300-mg/L dosage of Triton X-100. Such a

peak could be related to a positive selection of microorganisms

resistant to the surfactant. The wetland temperature registered

during this sampling was definitely favorable (238C) to the growth

of microorganisms and could, therefore, have contributed to the

microbial load peak.

After the end of the Triton X-100 dosage, the bacterial presence

on the roots decreased, even if a drop of only 38C in wetland

temperature was observed. These results confirm that a microbial

flora adaptation to the surfactant took place and that its presence

influenced the microbial populations of the reed bed, favoring the

development of microorganisms degrading Triton X-100.

Trends quite similar to those described for aerobic bacteria adhered

to the roots were observed for the filling medium (see Figure 6).

Aerobic Heterotrophic Culturable Bacterial Load at Different
Distances from the Basin Inlet During the Triton X-100
Dosage. The microbial load determined during the 30-mg/L

dosage of Triton X-100 at three different distances from the system

inlet (at 40, 80, and 120 cm) is reported in Table 5.

The bacterial load found in association with the roots was always

one or two log factor higher than that of the gravel, confirming the

results obtained for the study of bacterial load in relation to the

dosage of Triton X-100.

This behavior could be because of a difference in the composition

of microbial populations adhered to the roots and substrate gravel

and suggests that aerobic bacteria adhered to the roots could be better

adapted to the presence of non-ionic surfactants than those collected

with the gravel. It should also be noted that many aerobic bacterial

species live in association with the roots of aquatic plants and obtain

nourishment from them. Therefore, these microorganisms might

have been favored within the habitat of the roots of Phragmites
australis, which is quite rich in oxygen (Brix and Shierup, 1990).

A significant decreasing trend of the bacterial load determined on

gravel was observed for every culture media used, with increasing

distance from the basin inlet. This finding was probably a

consequence of the toxic action of the short-chain OPEOs and

particularly of OP, which showed an increase in concentration along

the basin, owing to its trapping into the bed.

Figure 5—Trends of bacterial load (mean values of three replicates) in the TY, TYT, and TYCV culture media in relation to
the dosage of Triton X-100. Microorganisms adhered to the roots at 80 cm from the basin inlet and at a depth of 25 cm.

Figure 6—Trends of bacterial load (mean values of three replicates) in the TY, TYT, and TYCV culture media in relation
to the dosage of Triton X-100. Microorganisms adhered to the filling medium at 80 cm from the basin inlet and at a depth
of 25 cm.
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Regarding bacteria adhered to the roots, a different trend from

that observed for gravel was found (Table 5). In fact, such bacteria

showed an expected growth curve, with a maximum at 80 cm from

the inlet. The different behavior observed in gravel and roots sam-

ples suggests that a bacterial diversity occurred in the two matrices.

Bacterial Diversity in Relation to the Presence of Triton
X-100. In Table 6, the microorganisms identified in the root

samples are reported. Only the genus was taken into consideration

to have an immediate picture of the modifications occurring to the

aerobic heterotrophic culturable bacterial community. For ‘‘Absence

of Triton X-100’’, we mean samples collected both before and after

Triton X-100 dosage. ‘‘Presence of Triton X-100’’ refers to the

samplings performed during the dosages (30 and 300 mg/L).

Gram-negative bacteria were identified as follows: Sphingomo-
nas macroboltabidus; Pseudomonas (fluorescens, synnxantha,

putida, taetrolens, oleavorans); Agrobacterium tumefaciens/
radiobacter; Brevundimonas vesicularis; and Janthinobacterium
lividum.

Several gram-positive bacteria, such as Arthrobacter histidino-
lovorans, Actinomyces hordeovulneris, and Tsukamurella incho-
nensis were also isolated.

Data obtained on root samples during the addition of Triton X-

100 (30 mg/L) indicated modifications in the microbial flora. The

species, Flavobacterium multivorum and Aeromonas hydrophila,

were favorably selected and were the most numerous microorgan-

isms during the surfactant dosage. Moreover, these strains grew

well in TYT, thus indicating their resistance to Triton X-100. In

fact, Flavobacterium multivorum and Aeromonas hydrophila were

always found during Triton X-100 dosing. Their presence decreased

from the inlet of the basin towards the outlet. This phenomenon

could probably be linked to the decrease in the OPEO oligomers

with EO units greater than 3. These compounds are easily

metabolized by bacterial activity (Allen et al., 1999; Van Ginkel,

1996). Aquaspirillum dispar that was not found in absence of Triton

X-100 dosage appeared in considerable concentrations during the

dosage, especially at distances of 80 and 120 cm from the inlet. This

finding suggests that this microorganism is resistant to the presence

of OP and OPEOs with a number of EO units less than 3, which

represents more than 90% of the catabolic products of Triton X-100.

Two further genera were identified at 300-mg/L dosage of Triton

X-100: Achromobacter and Photorabdus. The Pseudomonas
(fluorescens, biotypes G, D, C; mephitica; and synxantha) seemed

to resist well to the surfactant. Its bacterial load was high in the

TYT plates during the Triton X-100 dosage at the two different

concentrations. The bacteria were often isolated by the TYT plates.

At the end of the surfactant dosage, the bacterial flora seemed

more varied when compared with the flora present at the start of the

study. Several gram-positive bacteria, such as Bacillus spp. and

Arcanobacterium haemolyticum, appeared again. Sphingomonas
macrogoltabidus and Brevundimonas vesicularis were found again.

These strains were most probably sensitive to the toxic action of the

surfactant. In fact, for Sphingomonas paucimobilis, a 30-mg/L

dosage of Triton X-100 has been shown to reduce bacteria culturing

by 100% in 24 hours (Willunsen and Karlson, 1998).

Pseudomonas genus was also present and was represented, for the

most part, by the species maltophilia. Strains belonging to the family

Enterobacteriaceae were present in both absence and presence of

Triton X-100, even though they were found in smaller quantities in

absence of the surfactant. Erwinia chrysanthemi and Morganella
morganii were found after the end of Triton X-100 dosing.

Pseudomonas synxantha, mephitica, and fluorescens were

strongly present during surfactant dosing, suggesting that such

microorganisms could probably degrade Triton X-100. This is in

agreement with the literature; in fact, a strain of Pseudomonas that

is capable of demolishing polyethoxylate nonylphenol into a

diethoxylate has been isolated (Allen et al., 1999; Maki et al., 1994).

Before the starting of Triton X-100 dosing, the bacteria isolated

from the gravel samples did not belong to species different from

those found in the roots. During the dosage, significant modifica-

tions occurred in the microbial flora collected on the roots, while

less evident changes were observed in the gravel. This could be a

result of the prevalence, in the gravel samples, of microorganisms

that are characteristic of the wastewater.

Conclusions
This study showed that SSF-h constructed wetlands are effec-

tive in the treatment of Triton X-100, in which oligomers with a

number of EO units greater than 5 completely disappeared, both at

Table 5—Mean (n 5 3) bacterial mesophilic load (cfu 3
104/g dry substrate) in gravel and roots at different
distances from the basin inlet during the 30-mg/L dosage
of Triton X-100.

Distance from

the basin

inlet (cm)

TYT TY TYCV

Roots Gravel Roots Gravel Roots Gravel

40 48 4.5 76 12 65 8.9

80 120 1.5 400 0.9 100 1.1

120 70 0.15 80 0.3 20 0.1

Table 6—Bacterial diversity* in root samples in relation
to the absence or presence of Triton X-100 in the SSF-h
pilot-scale reed bed.

Genus of

microorganisms

Absence of

Triton X-100

Presence of

Triton X-100

Sphingomonas 111

Brevundimonas 1

Actinomyces 1

Tsukamurella 1

Arcanobacterium 1

Sphingobacterium 1

Erwinia 1

Morganella 1

Photorabdus 11

Rahnella 1

Achromobacter 11

Aquaspirillum 111

Enterobacter 1

Flavobacterium 111

Escherichia 1

Empedobacter 1

Pseudomonas 11 111

Agrobacterium 11 1

Janthinobacterium 1 1

Aeromonas 1 111

Arthrobacter 1 1

* The number of the signs 1 is related to the presence of the bac-

terial genus (1 5 10 to �102; 11 5 �102 – �104, 1115 �104).
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30-and 300-mg/Ldosages, owing to the progressive shortening of

the EO chain.

The postdosage study pointed out that sorption phenomena of OP

and OPEOs with 1 and 2 EO units occurred extensively.

A mass balance approach verified that OP and OPEOs flowed out

of the plant during dosage, and postdosage accounted for 40% of

the dosed surfactant.

From the comparison between theoretical and experimental

effluent COD data, it can be deduced that approximately 50% of the

dosed surfactant gave rise to metabolites having very low COD and/

or was ultimately biodegraded. In this regard, it should be noted that

ultimate biodegradation half-lives of OPEOs ranging from 1 to 4

weeks were recently measured (Staples et al., 2001) using accli-

mated treatment plant sludge. Such results are in agreement with the

high HRT adopted in this study; in addition, the residence time of

metabolites trapped in the bed can be as high as a few months.

Results of the microbiological investigations supported these

findings. A microbial load peak was observed for bacteria adhering

to the roots in association with the 300-mg/L dosage. Such a peak

could be the result of a positive selection of microorganisms resistant

to the surfactant. Strains of the Aeromonas, Flavobacterium, and

Aquaspirillum genera, which were not found in absence of Triton X-

100, appeared and were dominant during surfactant dosage.

Pseudomonas genus, which was elsewhere found to be effective in

the degradation of Triton X-100, increased their concentration during

the dosage of the non-ionic surfactant. The appearance of new

species and the increased presence of others should be linked to their

capacity to adapt to the presence of the surfactant and suggests that

these microorganisms are able to degrade Triton X-100.

More aerobic microorganisms were found adhering to the roots

than associated with the substrate gravel, showing that roots of

Phragmites australis are of great importance for the growth of the

aerobic biomass potentially involved in the degradation of organic

chemicals.
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