32 research outputs found

    Theory of the collapsing axisymmetric cavity

    Get PDF
    We investigate the collapse of an axisymmetric cavity or bubble inside a fluid of small viscosity, like water. Any effects of the gas inside the cavity as well as of the fluid viscosity are neglected. Using a slender-body description, we show that the minimum radius of the cavity scales like h0tαh_0 \propto t'^{\alpha}, where tt' is the time from collapse. The exponent α\alpha very slowly approaches a universal value according to α=1/2+1/(4ln(t))\alpha=1/2 + 1/(4\sqrt{-\ln(t')}). Thus, as observed in a number of recent experiments, the scaling can easily be interpreted as evidence of a single non-trivial scaling exponent. Our predictions are confirmed by numerical simulations

    Aalto-1, multi-payload CubeSat: In-orbit results and lessons learned

    Get PDF
    The in-orbit results and lessons learned of the first Finnish satellite Aalto-1 are briefly presented in this paper. Aalto-1, a three-unit CubeSat which was launched in June 2017, performed Aalto Spectral Imager (AaSI), Radiation Monitor (RADMON) and Electrostatic Plasma Brake (EPB) missions. The satellite partly fulfilled its mission objectives and allowed to either perform or attempt the experiments. Although attitude control was partially functional, AaSI and RADMON were able to acquire valuable measurements. EPB was successfully commissioned but the tether deployment was not successful.In this paper, we present the intended mission, in-orbit experience in operating and troubleshooting the satellite, an overview of experiment results, as well as lessons learned that will be used in future missions.</div

    Aalto-1, multi-payload CubeSat: design, integration and launch

    Get PDF
    The design, integration, testing, and launch of the first Finnish satellite Aalto-1 is briefly presented in this paper. Aalto-1, a three-unit CubeSat, launched into Sun-synchronous polar orbit at an altitude of approximately 500 km, is operational since June 2017. It carries three experimental payloads: Aalto Spectral Imager (AaSI), Radiation Monitor (RADMON), and Electrostatic Plasma Brake (EPB). AaSI is a hyperspectral imager in visible and near-infrared (NIR) wavelength bands, RADMON is an energetic particle detector and EPB is a de-orbiting technology demonstration payload. The platform was designed to accommodate multiple payloads while ensuring sufficient data, power, radio, mechanical and electrical interfaces. The design strategy of platform and payload subsystems consists of in-house development and commercial subsystems. The CubeSat Assembly, Integration & Test (AIT) followed Flatsat -- Engineering-Qualification Model (EQM) -- Flight Model (FM) model philosophy for qualification and acceptance.The paper briefly describes the design approach of platform and payload subsystems, their integration and test campaigns, and spacecraft launch. The paper also describes the ground segment & services that were developed by the Aalto-1 team.</p

    In Situ Data and Effect Correlation During September 2017 Solar Particle Event

    Get PDF
    Solar energetic particles are one of the main sources of particle radiation seen in space. In the first part of September 2017 the most active solar period of cycle 24 produced four large X-class flares and a series of (interplanetary) coronal mass ejections, which gave rise to radiation storms seen over all energies and at the ground by neutron monitors. This paper presents comprehensive cross comparisons of in situ radiation detector data from near-Earth satellites to give an appraisal on the state of present data processing for monitors of such particles. Many of these data sets have been the target of previous cross calibrations, and this event with a hard spectrum provides the opportunity to validate these results. As a result of the excellent agreement found between these data sets and the use of neutron monitor data, this paper also presents an analytical expression for fluence spectrum for the event. Derived ionizing dose values have been computed to show that although there is a significant high-energy component, the event was not particularly concerning as regards dose effects in spacecraft electronics. Several sets of spacecraft data illustrating single event effects are presented showing a more significant impact in this regard. Such a hard event can penetrate thick shielding; human dose quantities measured inside the International Space Station and derived through modeling for aircraft altitudes are also presented. Lastly, simulation results of coronal mass ejection propagation through the heliosphere are presented along with data from Mars-orbiting spacecraft in addition to data from the Mars surface

    General Perturbation Method for Satellite Constellation Deployment Using Nodal Precession

    No full text
    corecore