6 research outputs found

    Effects of a Large Dust Storm in the Near‐Surface Atmosphere as Measured by InSight in Elysium Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory

    No full text
    Abstract NASA's InSight landed in Elysium Planitia (~4.5°N,136°E) at Ls ~ 296° (November 2018), right after the decay of the 2018 Global Dust Storm (GDS) and before the onset of the 2019 Large Dust Storm (LDS) at Ls ~ 320° (January 2019). InSight's cameras observed a rise in the atmospheric opacities during the storm from ~0.7 to ~1.9, similarly to contemporaneous measurements by Curiosity in Gale crater. Pressure tides were strongly affected at the locations of InSight and Curiosity. In particular, the diurnal pressure mode experienced an abrupt increase during the onset of the LDS, similar to that measured by Curiosity, most likely due to longitudinally asymmetric dust loading. Later, the dust was redistributed around the planet and the semidiurnal mode evolved according to dust opacity in both missions. Before and after the onset of the storm, the observed wind patterns resulted from the interaction between regional and local slope flows induced by topography, which all produced a diurnal perturbation superimposed on a mean flow, dominated by the Hadley cell but with modifications due to channeling effects from the regional topography. However, the onset of the LDS modified this to a scenario consistent with enhanced tidal flows. The local air temperatures are strongly perturbed by the lander's thermal effects, and their retrieval significantly depends on wind patterns, which changed during the course of the dust storm. Observations suggest a decrease in convective vortices during the dust storm; however, vortex activity remained strong during the storm's onset due to the increase in wind speeds

    Effects of a Large Dust Storm in the Near-Surface Atmosphere as Measured by InSight in Elysium Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory

    Get PDF
    Abstract NASA's InSight landed in Elysium Planitia (~4.5°N,136°E) at Ls ~ 296° (November 2018), right after the decay of the 2018 Global Dust Storm (GDS) and before the onset of the 2019 Large Dust Storm (LDS) at Ls ~ 320° (January 2019). InSight's cameras observed a rise in the atmospheric opacities during the storm from ~0.7 to ~1.9, similarly to contemporaneous measurements by Curiosity in Gale crater. Pressure tides were strongly affected at the locations of InSight and Curiosity. In particular, the diurnal pressure mode experienced an abrupt increase during the onset of the LDS, similar to that measured by Curiosity, most likely due to longitudinally asymmetric dust loading. Later, the dust was redistributed around the planet and the semidiurnal mode evolved according to dust opacity in both missions. Before and after the onset of the storm, the observed wind patterns resulted from the interaction between regional and local slope flows induced by topography, which all produced a diurnal perturbation superimposed on a mean flow, dominated by the Hadley cell but with modifications due to channeling effects from the regional topography. However, the onset of the LDS modified this to a scenario consistent with enhanced tidal flows. The local air temperatures are strongly perturbed by the lander's thermal effects, and their retrieval significantly depends on wind patterns, which changed during the course of the dust storm. Observations suggest a decrease in convective vortices during the dust storm; however, vortex activity remained strong during the storm's onset due to the increase in wind speeds

    Martian fluvial conglomerates at gale crater

    No full text
    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0,9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers

    Curiosity at Gale Crater, Mars: characterization and analysis of the Rocknest sand shadow

    Get PDF
    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of san

    Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere

    Get PDF
    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and O-18/O-16 in water and C-13/C-12, O-18/O-16, O-17/O-16, and (CO)-C-13-O-18/(CO)-C-12-O-16 in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established similar to 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing
    corecore