27 research outputs found

    Lewis Phenotype in Women With Preterm Labor and Premature Rupture of the Membranes

    Get PDF
    Objective: The purpose of this study was to evaluate the possible association between Lewis phenotype status in pregnant women and preterm labor (PTL) or preterm rupture of the membranes (PROM)

    In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy

    Full text link
    Diabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal samples from 43 patients diagnosed with various stages of DR. We found differentially expressed transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap junction signaling. A multivariate regression model identified transcripts with progressive changes throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP-PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal ganglion cells, and Müller cell mediated changes in histidine and β-alanine signaling. While previously considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and cell-specific changes in the development of DR, and provide potential avenues for future therapeutic intervention

    An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles

    Get PDF
    Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.Peer reviewe

    Non-EST-based prediction of novel alternatively spliced cassette exons with cell signaling function in Caenorhabditis elegans and human

    Get PDF
    To better understand the complex role that alternative splicing plays in intracellular signaling, it is important to catalog the numerous splice variants involved in signal transduction. Therefore, we developed PASE (Prediction of Alternative Signaling Exons), a computational tool to identify novel alternative cassette exons that code for kinase phosphorylation or signaling protein-binding sites. We first applied PASE to the Caenorhabditis elegans genome. In this organism, our algorithm had an overall specificity of ≥76.4%, including 33 novel cassette exons that we experimentally verified. We then used PASE to analyze the human genome and made 804 predictions, of which 308 were found as alternative exons in the transcript database. We experimentally tested 384 of the remaining unobserved predictions and discovered 26 novel human exons for a total specificity of ≥41.5% in human. By using a test set of known alternatively spliced signaling exons, we determined that the sensitivity of PASE is ∼70%. GO term analysis revealed that our exon predictions were found in the introns of known signal transduction genes more often than expected by chance, indicating PASE enriches for splice variants that function in signaling pathways. Overall, PASE was able to uncover 59 novel alternative cassette exons in C. elegans and humans through a genome-wide ab initio prediction method that enriches for exons involved in signaling

    Prevalence of 2009 Pandemic Influenza A (H1N1) Virus Antibodies, Tampa Bay Florida — November–December, 2009

    Get PDF
    BACKGROUND: In 2009, a novel influenza virus (2009 pandemic influenza A (H1N1) virus (pH1N1)) caused significant disease in the United States. Most states, including Florida, experienced a large fall wave of disease from September through November, after which disease activity decreased substantially. We determined the prevalence of antibodies due to the pH1N1 virus in Florida after influenza activity had peaked and estimated the proportion of the population infected with pH1N1 virus during the pandemic. METHODS: During November-December 2009, we collected leftover serum from a blood bank, a pediatric children's hospital and a pediatric outpatient clinic in Tampa Bay Florida. Serum was tested for pH1N1 virus antibodies using the hemagglutination-inhibition (HI) assay. HI titers ≥40 were considered seropositive. We adjusted seroprevalence results to account for previously established HI assay specificity and sensitivity and employed a simple statistical model to estimate the proportion of seropositivity due to pH1N1 virus infection and vaccination. RESULTS: During the study time period, the overall seroprevalence in Tampa Bay, Florida was 25%, increasing to 30% after adjusting for HI assay sensitivity and specificity. We estimated that 5.9% of the population had vaccine-induced seropositivity while 25% had seropositivity secondary to pH1N1 virus infection. The highest cumulative incidence of pH1N1 virus infection was among children aged 5-17 years (53%) and young adults aged 18-24 years (47%), while adults aged ≥50 years had the lowest cumulative incidence (11-13%) of pH1N1 virus infection. CONCLUSIONS: After the peak of the fall wave of the pandemic, an estimated one quarter of the Tampa Bay population had been infected with the pH1N1 virus. Consistent with epidemiologic trends observed during the pandemic, the highest burdens of disease were among school-aged children and young adults

    The Use of Citrate as an Anticoagulant: The Southern Connection

    No full text

    Depletion of Resident Chlamydia pneumoniae through Leukoreduction by Filtration of Blood for Transfusion

    No full text
    Current studies indicate that a significant percentage of healthy blood donors carry Chlamydia pneumoniae in their blood. Although the clinical significance of such findings is unknown, eradication of such bacteria from blood components may contribute to transfusion safety. Deletion of C. pneumoniae in Red Blood Cell (RBC) units was accomplished through leukoreduction by filtration. The presence of bacteria in RBC units before and after leukoreduction was assessed by real-time PCR using primers specific for C. pneumoniae 16S rRNA. The eluates of filters used for leukoreduction were also assessed by PCR and immunostaining with fluorescein isothiocyanate-conjugated chlamydial monoclonal antibodies specific for C. pneumoniae determination. Nineteen of 30 RBC units tested showed the presence of C. pneumoniae DNA. Leukofiltration resulted in a marked reduction of leukocytes as well as C. pneumoniae in terms of bacterial number and positive rate for the bacteria. The eluates of filters showed trapped bacteria determined by both PCR and immunostaining assays. Thus, leukoreduction with a filter is an effective method to significantly reduce resident C. pneumoniae levels in RBC components but may not be completely sufficient for total eradication of this pathogen

    Lewis Phenotype in Women With Preterm Labor and Premature Rupture of the Membranes

    No full text
    Objective: The purpose of this study was to evaluate the possible association between Lewis phenotype status in pregnant women and preterm labor (PTL) or preterm rupture of the membranes (PROM).Methods: Red blood cell (RBC) Lewis phenotype was determined in 113 pregnant women admitted for PTL or PROM and in 121 controls. The results were controlled for the influence of race on Lewis phenotype.Results: Pregnancy was associated with a higher frequency in women with the a–b– phenotype. There was no association between RBC Lewis phenotype and the occurrence of PTL or PROM.Conclusions: A susceptibility to PTL or PROM is not due to a lack of Lewis antigen expression on the plasma membrane of the vaginal mucosa
    corecore