4,577 research outputs found

    PHP22 Are Hospital Medicines Prices Influenced by Discounts and Rebates?

    Get PDF

    Sweep, Step, Pulse, and Frequency-Based Techniques Applied to Protein Monolayer Electrochemistry at Nanoparticle Interfaces

    Get PDF
    Protein monolayer electrochemistry (PME), a strategy using synthetic platforms to study the electron transfer (ET) properties of adsorbed proteins, has been successfully applied to proteins adsorbed at monolayer-protected gold cluster (MPCs) assembled films, an adsorption interface shown to be an effective alternative, compared to traditional self-assembled monolayer (SAM) films, for the immobilization and study of ET proteins. Within PME studies, cyclic voltammetry (CV) remains the most commonly applied electrochemical technique in spite of several limitations that occur when the sweep technique is used at either platform. In particular, CV for PME at MPC films results in analysis complications stemming from the increased charging current inherent to electrochemical interfaces incorporating MPCs with capacitive properties. In this study, multiple electroanalytical techniques, involving step (chronocoulometry, CC), pulse (square wave voltammetry, SWV), and frequency-based impedance (electrochemical impedance spectroscopy, EIS) measurements, are applied to monolayers of adsorbed Pseudomonas aeruginosa azurin and horse heart cytochrome c at both MPC film assemblies as well as traditional SAMs. Electrochemical parameters (formal potential, electroactive surface coverage, double-layer capacitance, and ET rate constant) measured from these various techniques are directly compared and offer insight into the performance and reliability of each technique’s effectiveness in PME. While certain techniques result in measurements indistinguishable from CV, others offer distinct differences. Moreover, the application of alternative techniques reveals systemic limitations and complications within the electrochemical analysis that we further explore, including strategies for applying fast scanning techniques like SWV as well as the construction of MPC platforms with controlled levels of charging current that enable successful impedance analysis. The application of more advanced electrochemical techniques to developing electrochemical interfaces such as MPC film assemblies allows for a greater understanding of not only PME but also the applicability and effectiveness of these techniques to optimize the measurement of specific electrochemical parameters

    A Method to Improve the Early Stages of the Robotic Process Automation Lifecycle

    Get PDF
    The robotic automation of processes is of much interest to organizations. A common use case is to automate the repetitive manual tasks (or processes) that are currently done by back-office staff through some information system (IS). The lifecycle of any Robotic Process Automation (RPA) project starts with the analysis of the process to automate. This is a very time-consuming phase, which in practical settings often relies on the study of process documentation. Such documentation is typically incomplete or inaccurate, e.g., some documented cases never occur, occurring cases are not documented, or documented cases differ from reality. To deploy robots in a production environment that are designed on such a shaky basis entails a high risk. This paper describes and evaluates a new proposal for the early stages of an RPA project: the analysis of a process and its subsequent design. The idea is to leverage the knowledge of back-office staff, which starts by monitoring them in a non-invasive manner. This is done through a screen-mousekey- logger, i.e., a sequence of images, mouse actions, and key actions are stored along with their timestamps. The log which is obtained in this way is transformed into a UI log through image-analysis techniques (e.g., fingerprinting or OCR) and then transformed into a process model by the use of process discovery algorithms. We evaluated this method for two real-life, industrial cases. The evaluation shows clear and substantial benefits in terms of accuracy and speed. This paper presents the method, along with a number of limitations that need to be addressed such that it can be applied in wider contexts.Ministerio de Economía y Competitividad TIN2016-76956-C3-2-

    Reducing multiphoton ionization in a linearly polarized microwave field by local control

    Full text link
    We present a control procedure to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding to the original Hamiltonian a comparatively small control term which might consist of an additional set of microwave fields. This modification restores select invariant tori in the dynamics and prevents ionization. We demonstrate the procedure on the one-dimensional model of microwave ionization.Comment: 8 page

    Coherent states for the hydrogen atom

    Get PDF
    We construct wave packets for the hydrogen atom labelled by the classical action-angle variables with the following properties. i) The time evolution is exactly given by classical evolution of the angle variables. (The angle variable corresponding to the position on the orbit is now non-compact and we do not get exactly the same state after one period. However the gross features do not change. In particular the wave packet remains peaked around the labels.) ii) Resolution of identity using this overcomplete set involves exactly the classical phase space measure. iii) Semi-classical limit is related to Bohr-Sommerfield quantization. iv) They are almost minimum uncertainty wave packets in position and momentum.Comment: 9 pages, 2 figures, minor change in language and journal reference adde

    Multi-technique Quantitative Analysis and Socioeconomic Considerations of Lead, Cadmium, and Arsenic in Children\u27s Toys and Toy Jewelry

    Get PDF
    A wide spectrum and large number of children’s toys and toy jewelry items were purchased from both bargain and retail vendors and analyzed for arsenic, cadmium, and lead metal content using multiple analytical techniques, including flame and furnace atomic absorption spectroscopy as well as X-ray fluorescence spectroscopy. Particularly dangerous for young children, metal concentrations in toys/toy jewelry were assessed for compliance with current Consumer Safety Product Commission (CPSC) regulations (F963-11). A conservative metric involving multiple analytical techniques was used to categorize compliance: one technique confirmation of metal in excess of CPSC limits indicated a “suspect” item while confirmation on two different techniques warranted a non-compliant designation. Sample matrix-based standard addition provided additional confirmation of non-compliant and suspect products. Results suggest that origin of purchase, rather than cost, is a significant factor in the risk assessment of these materials with 57% of toys/toy jewelry items from bargain stores non-compliant or suspect compared to only 15% from retail outlets and 13% if only low cost items from the retail stores are compared. While jewelry was found to be the most problematic product (73% of non-compliant/suspect samples), lead (45%) and arsenic (76%) were the most dominant toxins found in non-compliant/suspect samples. Using the greater Richmond area as a model, the discrepancy between bargain and retail children’s products, along with growing numbers of bargain stores in low-income and urban areas, exemplifies an emerging socioeconomic public health issue

    Excitation of Small Quantum Systems by High-Frequency Fields

    Full text link
    The excitation by a high frequency field of multi--level quantum systems with a slowly varying density of states is investigated. A general approach to study such systems is presented. The Floquet eigenstates are characterized on several energy scales. On a small scale, sharp universal quasi--resonances are found, whose shape is independent of the field parameters and the details of the system. On a larger scale an effective tight--binding equation is constructed for the amplitudes of these quasi--resonances. This equation is non--universal; two classes of examples are discussed in detail.Comment: 4 pages, revtex, no figure

    Mitochondrial responses to ethylene and other hydrocarbons.

    Full text link

    Reply to Comment on "Criterion that Determines the Foldability of Proteins"

    Full text link
    We point out that the correlation between folding times and σ=(TθTf)/Tθ\sigma = (T_{\theta } - T_{f})/T_{\theta } in protein-like heteropolymer models where TθT_{\theta } and TfT_{f} are the collapse and folding transition temperatures was already established in 1993 before the other presumed equivalent criterion (folding times correlating with TfT_{f} alone) was suggested. We argue that the folding times for these models show no useful correlation with the energy gap even if restricted to the ensemble of compact structures as suggested by Karplus and Shakhnovich (cond-mat/9606037).Comment: 6 pages, Latex, 2 Postscript figures. Plots explicitly showing the lack of correlation between folding time and energy gap are adde
    corecore