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Fig. S1.Waveform applied during chronocoulometry (CC)
experiments on PME systems where the potential is
stepped from an initial value (Ei) to potentials (Ej1, Ej2…)
before and after the reduction potential of the adsorbed
protein (e.g. Ep,c (AZ) = 82 mV) while the corresponding
charge (Q) is measured and plotted vs. potential (Ej - Ei) to
show the theoretical linear relationship of Eq. (5) (Inset);
(b) Linear sweep voltammogram reduction wave for AZ at
a 5 layer MPC film and illustrating the potential steps
positive/before (Ej = 0.275 to 0.200) and negative/after (Ej
= -0.065 to -0.225) the protein cathodic peak potential
(Ep,c).
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Fig. S2. Chronocoulometry (CC) results for MPC film
assemblies in 4.4 mM potassium phosphate buffer (pH =
7.0, µ = 10 mM). (a) Data for (MPC)3 / C6 SAM / Au with
no AZ adsorbed (control) plotted with two separate
regression analyses for steps before and after Ep,c;
Chronocoulometry results for (MPC)3 / C6 SAM / Au with
charge passed from potential steps before Ep,a (from Ei = -
200 mV to Ej = -175 to -100 mV), marked as (◊) and those
after Ep,a (from Ei = -150 mV to Ej = 150 to 250 mV)
marked as (○) plotted as either (b) a single regression
analysis or (c) separate regression analysis for each set of
steps. Note: n = 5, the number of replicate measurements.
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Table S1 
Tracking the estimations of Cdl  (CC slope) as a function of potential steps direction during CC 
 

  

 Cdl (µF cm-2) or Slope 
 

                  Reductive Potential Steps              Oxidative Potential Steps 
 

Platform Before Ep,c After Ep,c Before Ep,a   After Ep,a 
 

Self-Assembled 
Monolayers 
 
C6 SAM / Au 
 

 

 
 
 
3.22 ± 0.45 

 

 
 
 
3.17 ± 0.02 

 

 
 
 
N/A 

 

 
 
 
N/A  

AZ / C6 SAM / Au 
        
 
MPC Film Assemblies 
      

3.18 ± 0.49                3.09 ± 0.02 N/A                      N/A  

(C6 MPC)3 / SAM / Au            8.25 ± 0.20                 7.33 ± 0.37 3.91 ± 0.17                      3.88 ± 0.03 
     
AZ/(C6 MPC)3 /SAM/Au        7.22 ± 0.06                 5.11 ± 0.05 3.45 ± 0.19                      4.24 ± 0.05 
     

 

Note: n = 4, number of replicate measurements involved in data acquisition 
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1. Alternate Azurin Purification to Check Homogeneity of Protein Population  

 
 In addition to the standard purification procedure cited in the experimental section two other 

purification procedures were attempted to assess the homogeneity of the AZ protein used in this study.  

Both purification procedures used AZ that had been initially prepared and purified according to the 

protocol described by Vargo et al [1].  The first purification procedure was an ion-exchange separation 

modeled after the procedures used to purify cyt c [2].  Briefly, the carboxymethyl cellulose packed (CM-52 

Whatman) column was hydrated with a 40 mM potassium phosphate buffer (KPB, pH = 7.0, µ = 90 mM)) 

prior to the loading of AZ. AZ in 4.4 mM KPB (pH = 7.0, µ = 10 mM) was subsequently passed through 

the column with eluting solvent 70 mM KPB (pH = 7.0, µ = 160 mM). The AZ fraction was collected and 

concentrated using an Amicon filtration system (YM-10 membrane). The second purification procedure 

utilized a smaller size exclusion column packed with Sephadex G-25 that was first equilibrated with 4.4 

mM KPB. Once the AZ sample had been loaded on this column, it was then eluted from the column with 

continuous addition of the buffer.  The protein was collected, its concentration checked with UV-Vis 

spectroscopy, and its purity (homogeneity) checked with gel electrophoresis as described below. 

 

 

2. SDS PAGE Analysis 

 SDS PAGE gel electrophoresis was used to probe the different purification procedures for evidence 

of multiple protein populations in the AZ samples. The SDS page result for AZ separation using CM-52 

Whatman column and Sephadex G-25 column are displayed in Fig. S1a and S1b, respectively. In both 

cases, AZ samples from these purification attempts were simultaneously analyzed and compared to AZ 

stock samples (prepared and purified according to Vargo et al.) using SDS PAGE under reducing and now 

reducing conditions. As seen in Fig. S1a and S1b the band in the first lane of both SDS PAGE results 

represents the standard.  Identical protein bands are observed in the SDS PAGE analysis comparing AZ 

separated on CM-52 Whatman column and AZ from the stock, both under reducing and non-reducing 

conditions. This result suggests that AZ separation was not improved using the CM-52 Whatman column. 

The SDS PAGE result for AZ separated on the Sephadex G-25 column was indistinguishable from that of 

AZ stock under reducing conditions. In contrast, some of the bands present under non-reducing condition 

for AZ separated on the Sephadex G-25 column were absent in AZ stock solution as see in Fig. S1b. This 

suggests that AZ separation on the Sephadex G-25 column has shown improved homogeneity in protein 

population compared to protocol reported by Vargo et al[1].  
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Standard  AR   AN   BR   BN

Fig. S3. Sodium dodecyl sulfate polyacrylamide gel
electrophoretic (SDS PAGE) analysis of AZ after
purification attempts . (a) SDS PAGE of AZ purified on
column (25 cm x 1 cm) packed with carboxymethyl
cellulose, (CM-52 Whatman) (AR and AN) and AZ stock
solution (BR and BN). (b) SDS PAGE of AZ purified
column (12 cm x 2 cm) packed with Sephadex G-25 (AN
and AR) and AZ stock solution (BN and BR). In each case
AR and BR refer to reducing conditions and AN and BN
refer to non-reducing conditions. The stock samples of AZ
(BR and BN) are samples prepared and purified using
protocol reported by Vargo et al.

Standard  AN   AR   BN   BR
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Fig. S4. Working curve generated from SWV simulations
(DigiElch) with peak separation (ΔEp) ≥ 10 mV after
changing ΔE from 4 to 16 mV. The quadratic equation
used to fit the portion of the working curve having ΔEp >
40 mV was used to estimate Λ from square wave
voltammograms of AZ / C12 (MPC)3 / C14 SAM / Au
with ΔEp > 40 mV . The trendline with diamond markers
was generated from simulated voltammograms with 10 ≤
ΔEp≤ 40 mV whereas the trendline with circular markers
was generated from simulated voltammograms with ΔEp >
40 mV.
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3.  Electrochemical Impedance Spectroscopy Theory 

Cole-Cole plots are a direct manipulation of the Nyquist (Bode) plot where the total impedance 
of the system is given by the following equation: 

 

Z = ZRe - jZIm                                                                                                                             (S1) 

 

The x-axis (real part) in the Cole-Cole plot is: 

 

Re " 1
jωZ

#  = 
ZIm

ω $ZRe
2  + ZIm

2 %                                                                                                     (S2) 

 

and the y-axis is: 

 

-Im " 1
jωZ

#  = 
ZRe

ω $ZRe
2  + ZIm

2 %                                                                                                     (S3) 

 

where j = (-1)1/2, ω = 2πf and f is the frequency. The shape of a typical Cole-Cole plot is a semicircle 
which is affixed to the origin on real axis, Re[1/jωZ], and its diameter is Cdl  or (Cdl + CAD) in the absence 
or presence of the redox species, respectively [11, 66, 67].  
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Fig. S5. Cole-Cole Plots of AZ adsorbed on gold electrode
modified with alkanethiols of varying chain lengths: (a)
AZ / C18 SAM / Au, (b) AZ / C16 SAM / Au and (c) AZ /
C14 SAM / Au in 4.4 potassium phosphate buffer (pH =
7.0, μ = 10 mM). The small high frequency semicircle
(left) which represents the non-Faradaic charging of the
double layer becomes more distinct the greater the number
of methylene units in the chain.
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Fig. S6. Possible orientations of AZ on C6 SAM modified
Au substrate. The greater defect density of the C6 SAM
makes it possible for AZ to bind via the hydrophobic
pockets near the copper redox center or directly on the
gold substrate through the disulfide bonds from the
cysteine residue on the opposite side of the protein. AZ
having dual orientations on the SAM platform could
impact the measured rate constant (ket).
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Fig. S7. Cole-Cole Plots of (a) unpurified (as received) and
(b) purified (CM-52, Whatman) cyt c adsorbed at 11-
mercaptoundecanoic acid SAM modified gold electrodes,
showing multiple population of protein present in the
unpurified sample.
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Fig. S7. Impedance spectra (Cole-Cole) tracking the growth
of C6 MPC film assembly on gold substrate. (a) Growth of 2
layers of 1, 9-NDT linked C6 MPCs on C6 SAM. (b)
Growth of 2 layer of 1, 9-NDT linked C6 MPC on C14
SAM.

a

b

12J. Electroanalytical Chemistry, 
Leopold et al. - Supplementary Data



13

Table S2 
Tracking the growth of C6 MPC film assembly on C6 and C14 modified gold substrate via Cdl 
values. 
 

 

Cdl (µF cm-2) 
 
Platform 

 
CV 

 
EIS (CNLS)                     

 
EIS (Cole –Cole)                  

 

C6 SAM / Au 
 

3.09 ± 0.02 
 

2.90 ± 0.01 
 

2.95 ± 0.04 
(C6 MPC)1 / C6 SAM / Au            3.60 ± 0.13                 3.64 ± 0.26                      3.63 ± 0.18 
(C6 MPC)2 / C6 SAM / Au            4.39 ± 0.40                 4.57 ± 0.41                      4.49 ± 0.43 
C14 SAM / Au 1.57 ± 0.04                              1.49 ± 0.04 1.48 ± 0.02                              
(C6 MPC)1 / C14 SAM / Au         2.58 ± 0.31                 2.47 ± 0.19                      2.43 ± 0.22 
(C6 MPC)2 / C14 SAM / Au         3.45 ± 0.25                 3.43 ± 0.26                      3.43 ± 0.28 

 
 

Note: n = 4, number of replicate measurements involved in data acquisition 
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Fig. S8. Based on the capacitive behavior of MPCs, a modification to the Randles
equivalent circuit is proposed which characterizes the behavior of surface adsorbed
species at such an interface [69, 70]. The circuit involves the addition of an extra
capacitor in parallel with the double layer capacitor of the film to represent the
added capacitance from the incorporated MPCs. We note, however, that this
parallel capacitor is merely symbolic/visual as it is just another contributing factor
to the overall capacitance and that the circuitry is essentially unchanged.
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