103 research outputs found

    A mutate-and-map protocol for inferring base pairs in structured RNA

    Full text link
    Chemical mapping is a widespread technique for structural analysis of nucleic acids in which a molecule's reactivity to different probes is quantified at single-nucleotide resolution and used to constrain structural modeling. This experimental framework has been extensively revisited in the past decade with new strategies for high-throughput read-outs, chemical modification, and rapid data analysis. Recently, we have coupled the technique to high-throughput mutagenesis. Point mutations of a base-paired nucleotide can lead to exposure of not only that nucleotide but also its interaction partner. Carrying out the mutation and mapping for the entire system gives an experimental approximation of the molecules contact map. Here, we give our in-house protocol for this mutate-and-map strategy, based on 96-well capillary electrophoresis, and we provide practical tips on interpreting the data to infer nucleic acid structure.Comment: 22 pages, 5 figure

    Cocrystal structure of a class-I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase

    Get PDF
    Riboswitches are mRNA domains that bind metabolites and modulate gene expression in cis. We report cocrystal structures of a remarkably compact riboswitch (34 nucleotides suffice for ligand recognition) from Bacillus subtilis selective for the essential nucleobase preQ1 (7-aminomethyl-7-deazaguanine). These reveal a previously unrecognized pseudoknot fold, and suggest a conserved gene-regulatory mechanism whereby ligand binding promotes sequestration of an RNA segment that otherwise assembles into a transcriptional anti-terminator

    Characterization of the Trans Watson-Crick GU Base Pair Located in the Catalytic Core of the Antigenomic HDV Ribozyme

    Get PDF
    The HDV ribozyme’s folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U23 and G28 nucleotides that form this base pair are perfectly conserved in all natural variants of the HDV ribozyme, and therefore are considered as being part of the signature of HDV-like ribozymes. Both the formation and the transformation of this base pair have been studied mainly by crystal structure and by molecular dynamic simulations. In order to obtain physical support for the formation of this base pair in solution, a set of experiments, including direct mutagenesis, the site-specific substitution of chemical groups, kinetic studies, chemical probing and magnesium-induced cleavage, were performed with the specific goal of characterizing this trans Watson-Crick GU base pair in an antigenomic HDV ribozyme. Both U23 and G28 can be substituted for nucleotides that likely preserve some of the H-bond interactions present before and after the cleavage step. The formation of the more stable trans Watson-Crick base pair is shown to be a post-cleavage event, while a possibly weaker trans Watson-Crick/Hoogsteen interaction seems to form before the cleavage step. The formation of this unusually stable post-cleavage base pair may act as a driving force on the chemical cleavage by favouring the formation of a more stable ground state of the product-ribozyme complex. To our knowledge, this represents the first demonstration of a potential stabilising role of a post-cleavage conformational switch event in a ribozyme-catalyzed reaction

    FRASS: the web-server for RNA structural comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The impressive increase of novel RNA structures, during the past few years, demands automated methods for structure comparison. While many algorithms handle only small motifs, few techniques, developed in recent years, (ARTS, DIAL, SARA, SARSA, and LaJolla) are available for the structural comparison of large and intact RNA molecules.</p> <p>Results</p> <p>The FRASS web-server represents a RNA chain with its Gauss integrals and allows one to compare structures of RNA chains and to find similar entries in a database derived from the Protein Data Bank. We observed that FRASS scores correlate well with the ARTS and LaJolla similarity scores. Moreover, the-web server can also reproduce satisfactorily the DARTS classification of RNA 3D structures and the classification of the SCOR functions that was obtained by the SARA method.</p> <p>Conclusions</p> <p>The FRASS web-server can be easily used to detect relationships among RNA molecules and to scan efficiently the rapidly enlarging structural databases.</p

    Biophysical and electrochemical studies of protein-nucleic acid interactions

    Get PDF
    This review is devoted to biophysical and electrochemical methods used for studying protein-nucleic acid (NA) interactions. The importance of NA structure and protein-NA recognition for essential cellular processes, such as replication or transcription, is discussed to provide background for description of a range of biophysical chemistry methods that are applied to study a wide scope of protein-DNA and protein-RNA complexes. These techniques employ different detection principles with specific advantages and limitations and are often combined as mutually complementary approaches to provide a complete description of the interactions. Electrochemical methods have proven to be of great utility in such studies because they provide sensitive measurements and can be combined with other approaches that facilitate the protein-NA interactions. Recent applications of electrochemical methods in studies of protein-NA interactions are discussed in detail

    Preparation of Group I Introns for Biochemical Studies and Crystallization Assays by Native Affinity Purification

    Get PDF
    The study of functional RNAs of various sizes and structures requires efficient methods for their synthesis and purification. Here, 23 group I intron variants ranging in length from 246 to 341 nucleotides—some containing exons—were subjected to a native purification technique previously applied only to shorter RNAs (<160 nucleotides). For the RNAs containing both exons, we adjusted the original purification protocol to allow for purification of radiolabeled molecules. The resulting RNAs were used in folding assays on native gel electrophoresis and in self-splicing assays. The intron-only RNAs were subjected to the regular native purification scheme, assayed for folding and employed in crystallization screens. All RNAs that contained a 3′ overhang of one nucleotide were efficiently cleaved off from the support and were at least 90% pure after the non-denaturing purification. A representative subset of these RNAs was shown to be folded and self-splicing after purification. Additionally, crystals were grown for a 286 nucleotide long variant of the Clostridium botulinum intron. These results demonstrate the suitability of the native affinity purification method for the preparation of group I introns. We hope these findings will stimulate a broader application of this strategy to the preparation of other large RNA molecules

    Molecular modelling of the GIR1 branching ribozyme gives new insight into evolution of structurally related ribozymes

    Get PDF
    Twin-ribozyme introns contain a branching ribozyme (GIR1) followed by a homing endonuclease (HE) encoding sequence embedded in a peripheral domain of a group I splicing ribozyme (GIR2). GIR1 catalyses the formation of a lariat with 3 nt in the loop, which caps the HE mRNA. GIR1 is structurally related to group I ribozymes raising the question about how two closely related ribozymes can carry out very different reactions. Modelling of GIR1 based on new biochemical and mutational data shows an extended substrate domain containing a GoU pair distinct from the nucleophilic residue that dock onto a catalytic core showing a different topology from that of group I ribozymes. The differences include a core J8/7 region that has been reduced and is complemented by residues from the pre-lariat fold. These findings provide the basis for an evolutionary mechanism that accounts for the change from group I splicing ribozyme to the branching GIR1 architecture. Such an evolutionary mechanism can be applied to other large RNAs such as the ribonuclease P

    The RICORDO approach to semantic interoperability for biomedical data and models: strategy, standards and solutions.

    Get PDF
    BACKGROUND: The practice and research of medicine generates considerable quantities of data and model resources (DMRs). Although in principle biomedical resources are re-usable, in practice few can currently be shared. In particular, the clinical communities in physiology and pharmacology research, as well as medical education, (i.e. PPME communities) are facing considerable operational and technical obstacles in sharing data and models. FINDINGS: We outline the efforts of the PPME communities to achieve automated semantic interoperability for clinical resource documentation in collaboration with the RICORDO project. Current community practices in resource documentation and knowledge management are overviewed. Furthermore, requirements and improvements sought by the PPME communities to current documentation practices are discussed. The RICORDO plan and effort in creating a representational framework and associated open software toolkit for the automated management of PPME metadata resources is also described. CONCLUSIONS: RICORDO is providing the PPME community with tools to effect, share and reason over clinical resource annotations. This work is contributing to the semantic interoperability of DMRs through ontology-based annotation by (i) supporting more effective navigation and re-use of clinical DMRs, as well as (ii) sustaining interoperability operations based on the criterion of biological similarity. Operations facilitated by RICORDO will range from automated dataset matching to model merging and managing complex simulation workflows. In effect, RICORDO is contributing to community standards for resource sharing and interoperability.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Understanding the Origins of Bacterial Resistance to Aminoglycosides through Molecular Dynamics Mutational Study of the Ribosomal A-Site

    Get PDF
    Paromomycin is an aminoglycosidic antibiotic that targets the RNA of the bacterial small ribosomal subunit. It binds in the A-site, which is one of the three tRNA binding sites, and affects translational fidelity by stabilizing two adenines (A1492 and A1493) in the flipped-out state. Experiments have shown that various mutations in the A-site result in bacterial resistance to aminoglycosides. In this study, we performed multiple molecular dynamics simulations of the mutated A-site RNA fragment in explicit solvent to analyze changes in the physicochemical features of the A-site that were introduced by substitutions of specific bases. The simulations were conducted for free RNA and in complex with paromomycin. We found that the specific mutations affect the shape and dynamics of the binding cleft as well as significantly alter its electrostatic properties. The most pronounced changes were observed in the U1406C∶U1495A mutant, where important hydrogen bonds between the RNA and paromomycin were disrupted. The present study aims to clarify the underlying physicochemical mechanisms of bacterial resistance to aminoglycosides due to target mutations

    Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities

    Get PDF
    The assumption that RNA can be readily classified into either protein-coding or non-protein–coding categories has pervaded biology for close to 50 years. Until recently, discrimination between these two categories was relatively straightforward: most transcripts were clearly identifiable as protein-coding messenger RNAs (mRNAs), and readily distinguished from the small number of well-characterized non-protein–coding RNAs (ncRNAs), such as transfer, ribosomal, and spliceosomal RNAs. Recent genome-wide studies have revealed the existence of thousands of noncoding transcripts, whose function and significance are unclear. The discovery of this hidden transcriptome and the implicit challenge it presents to our understanding of the expression and regulation of genetic information has made the need to distinguish between mRNAs and ncRNAs both more pressing and more complicated. In this Review, we consider the diverse strategies employed to discriminate between protein-coding and noncoding transcripts and the fundamental difficulties that are inherent in what may superficially appear to be a simple problem. Misannotations can also run in both directions: some ncRNAs may actually encode peptides, and some of those currently thought to do so may not. Moreover, recent studies have shown that some RNAs can function both as mRNAs and intrinsically as functional ncRNAs, which may be a relatively widespread phenomenon. We conclude that it is difficult to annotate an RNA unequivocally as protein-coding or noncoding, with overlapping protein-coding and noncoding transcripts further confounding this distinction. In addition, the finding that some transcripts can function both intrinsically at the RNA level and to encode proteins suggests a false dichotomy between mRNAs and ncRNAs. Therefore, the functionality of any transcript at the RNA level should not be discounted
    corecore