The HDV ribozyme’s folding pathway is, by far, the most complex folding
pathway elucidated to date for a small ribozyme. It includes 6 different steps
that have been shown to occur before the chemical cleavage. It is likely that
other steps remain to be discovered. One of the most critical of these unknown
steps is the formation of the trans Watson-Crick GU base
pair within loop III. The U23 and G28 nucleotides that
form this base pair are perfectly conserved in all natural variants of the
HDV ribozyme, and therefore are considered as being part of the signature
of HDV-like ribozymes. Both the formation and the transformation of this base
pair have been studied mainly by crystal structure and by molecular dynamic
simulations. In order to obtain physical support for the formation of this
base pair in solution, a set of experiments, including direct mutagenesis,
the site-specific substitution of chemical groups, kinetic studies, chemical
probing and magnesium-induced cleavage, were performed with the specific goal
of characterizing this trans Watson-Crick GU base pair in
an antigenomic HDV ribozyme. Both U23 and G28 can be
substituted for nucleotides that likely preserve some of the H-bond interactions
present before and after the cleavage step. The formation of the more stable trans
Watson-Crick base pair is shown to be a post-cleavage event, while a possibly
weaker trans Watson-Crick/Hoogsteen interaction seems to
form before the cleavage step. The formation of this unusually stable post-cleavage
base pair may act as a driving force on the chemical cleavage by favouring
the formation of a more stable ground state of the product-ribozyme complex.
To our knowledge, this represents the first demonstration of a potential stabilising
role of a post-cleavage conformational switch event in a ribozyme-catalyzed
reaction