48 research outputs found

    Protecting the past for the public good: archaeology and Australian heritage law

    Get PDF
    Archaeological remains have long been recognised as fragile evidence of the past, which require protection. Legal protection for archaeological heritage has existed in Australia for more than thirty years but there has been little analysis of the aims and effectiveness of that legislation by the archaeological profession. Much Australian heritage legislation was developed in a period where the dominant paradigm in archaeological theory and practice held that archaeology was an objective science. Australian legislative frameworks continue to strongly reflect this scientific paradigm and contemporary archaeological heritage management practice is in turn driven by these legislative requirements. This thesis examines whether archaeological heritage legislation is fulfilling its original intent. Analysis of legislative development in this thesis reveals that legislators viewed archaeological heritage as having a wide societal value, not solely or principally for the archaeological community. Archaeological heritage protection is considered within the broader philosophy of environmental conservation. As an environmental issue, it is suggested that a ‘public good’ conservation paradigm is closer to the original intent of archaeological heritage legislation, rather than the “scientific” paradigm which underlies much Australian legislation. Through investigation of the developmental history of Australian heritage legislation it is possible to observe how current practice has diverged from the original intent of the legislation, with New South Wales and Victoria serving as case studies. Further analysis is undertaken of the limited number of Australian court cases which have involved substantial archaeological issues to determine the court’s attitude to archaeological heritage protection. Situating archaeological heritage protective legislation within the field of environmental law allows the examination of alternate modes of protecting archaeological heritage and creates opportunities for ‘public good’ conservation outcomes. This shift of focus to ‘public good’ conservation as an alternative to narrowly-conceived scientific outcomes better aligns with current public policy directions including the sustainability principles, as they have developed in Australia, as well as indigenous rights of self-determination. The thesis suggests areas for legal reforms which direct future archaeological heritage management practice to consider the ‘public good’ values for archaeological heritage protection

    Dynamical mean-field approach to materials with strong electronic correlations

    Full text link
    We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Status of the GAMMA-400 Project

    Full text link
    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV - 3 TeV is presented. The angular resolution of the instrument, 1-2{\deg} at E{\gamma} ~100 MeV and ~0.01^{\circ} at E{\gamma} > 100 GeV, its energy resolution ~1% at E{\gamma} > 100 GeV, and the proton rejection factor ~10E6 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.Comment: 6 pages, 1 figure, 1 table, submitted to Advances in Space Researc

    Dose dependences of the superconducting transition temperature and collision cascades of Nb_3Sn

    No full text
    Translated from Russian (Fiz. Khim. Obrab. Mater. 1988 v. 22(3) p. 5-7)Available from British Library Document Supply Centre- DSC:9023.19(VR-Trans--4067)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
    corecore