19 research outputs found

    Desmoglein 2 mutant mice develop cardiac fibrosis and dilation

    Get PDF
    Desmosomes are cell–cell adhesion sites and part of the intercalated discs, which couple adjacent cardiomyocytes. The connection is formed by the extracellular domains of desmosomal cadherins that are also linked to the cytoskeleton on the cytoplasmic side. To examine the contribution of the desmosomal cadherin desmoglein 2 to cardiomyocyte adhesion and cardiac function, mutant mice were prepared lacking a part of the extracellular adhesive domain of desmoglein 2. Most live born mutant mice presented normal overall cardiac morphology at 2 weeks. Some animals, however, displayed extensive fibrotic lesions. Later on, mutants developed ventricular dilation leading to cardiac insufficiency and eventually premature death. Upon histological examination, cardiomyocyte death by calcifying necrosis and replacement by fibrous tissue were observed. Fibrotic lesions were highly proliferative in 2-week-old mutants, whereas the fibrotic lesions of older mutants showed little proliferation indicating the completion of local muscle replacement by scar tissue. Disease progression correlated with increased mRNA expression of c-myc, ANF, BNF, CTGF and GDF15, which are markers for cardiac stress, remodeling and heart failure. Taken together, the desmoglein 2-mutant mice display features of dilative cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy, an inherited human heart disease with pronounced fibrosis and ventricular arrhythmias that has been linked to mutations in desmosomal proteins including desmoglein 2

    Tetracycline-controlled transgene activation using the ROSA26-iM2-GFP knock-in mouse strain permits GFP monitoring of DOX-regulated transgene-expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conditional gene activation is an efficient strategy for studying gene function in genetically modified animals. Among the presently available gene switches, the tetracycline-regulated system has attracted considerable interest because of its unique potential for reversible and adjustable gene regulation.</p> <p>Results</p> <p>To investigate whether the ubiquitously expressed <it>Gt(ROSA)26Sor </it>locus enables uniform DOX-controlled gene expression, we inserted the improved tetracycline-regulated transcription activator iM2 together with an iM2 dependent GFP gene into the <it>Gt(ROSA)26Sor </it>locus, using gene targeting to generate ROSA26-iM2-GFP <b>(</b>R26<sup>t1Δ</sup>) mice. Despite the presence of ROSA26 promoter driven iM2, R26<sup>t1Δ </sup>mice showed very sparse DOX-activated expression of different iM2-responsive reporter genes in the brain, mosaic expression in peripheral tissues and more prominent expression in erythroid, myeloid and lymphoid lineages, in hematopoietic stem and progenitor cells and in olfactory neurons.</p> <p>Conclusions</p> <p>The finding that gene regulation by the DOX-activated transcriptional factor iM2 in the <it>Gt(ROSA)26Sor </it>locus has its limitations is of importance for future experimental strategies involving transgene activation from the endogenous ROSA26 promoter. Furthermore, our ROSA26-iM2 knock-in mouse model (R26<sup>t1Δ</sup>) represents a useful tool for implementing gene function <it>in vivo </it>especially under circumstances requiring the side-by-side comparison of gene manipulated and wild type cells. Since the ROSA26-iM2 mouse allows mosaic gene activation in peripheral tissues and haematopoietic cells, this model will be very useful for uncovering previously unknown or unsuspected phenotypes.</p

    Generation and characterization of tTS-H4 : a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system

    Get PDF
    BACKGROUND: Conditional gene regulatory systems ensuring tight and adjustable expression of therapeutic genes are central for developing future gene therapy strategies. Among various regulatory systems, tetracycline-controlled gene expression has emerged as a safe and reliable option. Moreover, the tightness of tetracycline-regulated gene switches can be substantially improved by complementing transcriptional activators with antagonizing repressors. METHODS: To develop novel tetracycline-responsive transcriptional repressors, we fused various transcriptional silencing domains to the TetR (B/E) DNA-binding and dimerization domain of the Tn10-encoded tetracycline resistance operon (TetR (B/E)). The resulting fusion proteins were individually tested for their ability to repress transcription of the constitutively active hypoxanthine phosphoribosyltransferase (HPRT) promoter. In addition, compatibility with the commonly used reverse tetracycline-controlled transactivator system (rtTA-system) and responsiveness to the pharmacological effector doxycycline (DOX) were evaluated. Finally, inducibility, effector-dependent promoter activity and the modification of histone H3 and H4 of the active versus the repressed target promoter were determined. RESULTS: Fusion of the human deacetylase 4 (HDAC4) carboxy-terminal silencing domain to TetR (B/E) resulted in a functional transcriptional repressor. This novel repressor, termed tTS-H4, efficiently reduced the activity of the murine HPRT promoter and a constitutively active human cytomegalovirus (hCMV) minimal promoter. Furthermore, combining tTS-H4 with the rtTA transcriptional activator allowed for grading, turning off and resuming target gene expression over several orders of magnitude without background. CONCLUSIONS: The tTS-H4 repressor is compatible with the commonly used rtTA transcriptional activation system and is a versatile new tool for tightly and adjustably regulating conditional gene expression

    Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues.

    No full text
    International audienceLigand-activated Cre recombinases are widely used for studying gene function in vitro and in conditional mouse models. To compare ligand-dependent Cre recombinases, different Cre estrogen receptor fusions were introduced into the ROSA26 locus of embryonic stem (ES) cells and assayed for genotoxicity and recombination efficiency. Of the tested recombinases, the CreERT2 variant showed no toxicity and was highly responsive to ligand induction. To constitutively express CreERT2 in mice and also to clarify whether the CreERT2 system displays background activity, we generated a knock-in mouse line harboring the CreERT2 coding region under the control of the ROSA26 locus. Analysis of this ROSA26-CreERT2 deleter mouse with different reporter strains revealed ubiquitous recombination in the embryo and partial recombination in peripheral and hematopoietic tissues but no effective CreERT2 expression in the brain. Furthermore, using flow cytometry, we found low-level background recombination in noninduced bitransgenic ROSA26-CreERT2/EGFP reporter mice. To determine whether background activity poses a general problem for conducting conditional in vivo experiments with the ROSA26-CreERT2 deleter, we used a sensitive conditional skin cancer model. In this assay, cancer induction was completely restricted to induced bitransgenic CreERT2/K-Ras(V12) mice, whereas noninduced control animals did not show any sign of cancer, indicating the usefulness of the ROSA-CreERT2 system for regulating conditional gene expression in vivo. The ROSA26-CreERT2 deleter strain will be a convenient experimental tool for studying gene function under circumstances requiring partial induction of recombination in peripheral tissues and will be useful for uncovering previously unknown or unsuspected phenotypes
    corecore