106 research outputs found

    MicroRNAs delivery into human cells grown on 3D-printed PLA scaffolds coated with a novel fluorescent PAMAM dendrimer for biomedical applications

    Get PDF
    Many advanced synthetic, natural, degradable or non-degradable materials have been employed to create scaffolds for cell culture for biomedical or tissue engineering applications. One of the most versatile material is poly-lactide (PLA), commonly used as 3D printing filament. Manufacturing of multifunctional scaffolds with improved cell growth proliferation and able to deliver oligonucleotides represents an innovative strategy for controlled and localized gene modulation that hold great promise and could increase the number of applications in biomedicine. Here we report for the first time the synthesis of a novel Rhodamine derivative of a poly-amidoamine dendrimer (G = 5) able to transfect cells and to be monitored by confocal microscopy that we also employed to coat a 3D-printed PLA scaffold. The coating do not modify the oligonucleotide binding ability, toxicity or transfection properties of the scaffold that is able to increase cell proliferation and deliver miRNA mimics (i.e., pre-mir-503) into human cells. Although further experiments are required to optimize the dendrimer/miRNA ratio and improve transfection efficiency, we demonstrated the effectiveness of this promising and innovative 3D-printed transfection system to transfer miRNAs into human cells for future biomedical applications. © 2018, The Author(s)

    Operational Risk framework and Standardised Measurement Approach (SMA)

    Get PDF
    On December 2017, the Basel Committee published the “Basel III: Finalising post-crisis reforms” (also known as Basel IV) that introduces the Standardised Measurement Approach (SMA) to define the Pillar I operational risk capital requirement that is foreseen to entry into force on the 1st of January 2025, replacing all the existing approaches. This approach not only introduces a new method to be used to calculate the operational risk capital requirement but details several updates that have to be applied to the main components of the framework such as Governance, Loss Data Collection and Risk Self-Assessment. With the entry into force of the SMA, banks have the chance to fully re-think their operational risk Management Framework (ORMF) integrating the different components and making it more efficient and effective in terms of data governance, process management and reporting. This paper describes the SMA methodology to be implemented to calculate the Pillar I operational risk capital requirement and provides an overview of the expected impact on the different components of the ORMF of the bank

    Thyroid status affects rat liver regeneration after partial hepatectomy by regulating cell cycle and apoptosis proteins

    Get PDF
    In rats, various growth factors and hormones, as well as partial hepatectomy (PH) are able to trigger the proliferative response of hepatocytes. Although recent evidence highlights the important role of thyroid hormones and thyroid status in regulating the growth of liver cells in vitro and in vivo models, the mechanism involved in the pro-proliferative effects of thyroid hormones is still unclear. Here we have investigated how in rats made hypo- and hyperthyroid after prolonged treatment respectively with propylthiouracil (PTU) and triiodothyronine (T3), the thyroid status affects liver regeneration after PH by regulating cell cycle and apoptosis proteins. Our results show that both in control and partially hepatectomized animals hyperthyroidism increases the cyclin D1, E and A levels and the activity of cyclin-cdk complexes, and decreases the levels of cdk inhibitors such as p16 and p27. On the contrary hypothyroidism induces a down-regulation of the activity of cyclin cdk complexes decreasing cyclin levels. Thyroid hormones control also p53 and p73, two proteins involved in apoptosis and growth arrest which are induced by PH. In particular, hypothyroidism increases and T3 treatment decreases p73 levels. The analysis of the phosphorylated forms of p42/44 and p38 MAPK revealed that they are induced during hepatic regeneration in euthyroid and hyperthyroid rats whereas they are negatively regulated in hypothyroid rats. In conclusion our data demonstrate that thyroid status can affects liver regeneration, altering the expression and the activity of the proteins involved in the control of cell cycle and growth arrest. Copyright © 2005 S. Karger AG, Basel

    Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis

    Get PDF
    The current epidemic of non-alcoholic fatty liver disease (NAFLD) is reshaping the field of hepatology all around the world. The widespread diffusion of metabolic risk factors such as obesity, type2-diabetes mellitus, and dyslipidemia has led to a worldwide diffusion of NAFLD. In parallel to the increased availability of effective anti-viral agents, NAFLD is rapidly becoming the most common cause of chronic liver disease in Western Countries, and a similar trend is expected in Eastern Countries in the next years. This epidemic and its consequences have prompted experts from all over the word in identifying effective strategies for the diagnosis, management, and treatment of NAFLD. Different scientific societies from Europe, America, and Asia-Pacific regions have proposed guidelines based on the most recent evidence about NAFLD. These guidelines are consistent with the key elements in the management of NAFLD, but still, show significant difference about some critical points. We reviewed the current literature in English language to identify the most recent scientific guidelines about NAFLD with the aim to find and critically analyse the main differences. We distinguished guidelines from 5 different scientific societies whose reputation is worldwide recognised and who are representative of the clinical practice in different geographical regions. Differences were noted in: the definition of NAFLD, the opportunity of NAFLD screening in high-risk patients, the noninvasive test proposed for the diagnosis of NAFLD and the identification of NAFLD patients with advanced fibrosis, in the follow-up protocols and, finally, in the treatment strategy (especially in the proposed pharmacological management). These difference have been discussed in the light of the possible evolution of the scenario of NAFLD in the next years

    Antibodies to soluble liver antigen and α-enolase in patients with autoimmune hepatitis

    Get PDF
    BACKGROUND: Antibodies to a cytosolic soluble liver antigen (SLA) are specifically detected in patients with autoimmune hepatitis (AIH). The target of anti-SLA has been identified as a ~50 kDa UGA serine tRNA-associated protein complex (tRNP((Ser)Sec)), through the screening of cDNA libraries. A recent report questioned the identity of tRNP((Ser)Sec )as the real SLA antigen. The latter study identified α-enolase as a major anti-SLA target, through proteomic analysis. METHODS: In an attempt to explain the observed discrepancy we have investigated reactivity of SLA positive sera against α-enolase and tRNP((Ser)Sec )using rat and primate liver homogenate and the recombinant antigens. Thirty-three serum samples, 11 from SLA-positive patients and 22 from SLA negative controls were investigated. SLA antibodies were detected by an inhibition ELISA and confirmed by immunoblot using human liver homogenate. Autoantibody reactivity was further evaluated using preparations of primate and rat liver homogenates. Anti-α-enolase antibody reactivity has been tested by immunoblot using recombinant α-enolase. An affinity purified goat polyclonal anti-α-enolase IgG antibody was used as reference serum sample. Anti-tRNP((Ser)Sec )antibody reactivity was detected by ELISA or dot blot using recombinant tRNP((Ser)Sec )antigen. RESULTS AND DISCUSSION: The affinity purified IgG antibody directed to human α-enolase gave a band of approximately 48 kDa in both human and rat liver homogenates. A high titre anti-tRNP((Ser)Sec )antibody serum gave a single band of ~50 kDa in both liver preparations. All but one anti-SLA antibody positive sera reacted with a ~50 kDa but none immunofixed a 48 kDa band. All anti-SLA antibody positive sera reacted strongly with the recombinant full length tRNP((Ser)Sec )protein. None of the anti-SLA negative sera reacted with tRNP((Ser)Sec). Anti-SLA positive, and anti-SLA negative sera reacted equally against recombinant α-enolase by immunoblot. Pre-incubation of anti-SLA positive sera with tRNP((Ser)Sec )completely abolished the 50 kDa band. The findings of the present study indicate that α-enolase and tRNP((Ser)Sec )are both expressed in primate and rat liver and have a respective MW of 48 and 50 kDa. They also show that anti-tRNP((Ser)Sec )– but not anti-α-enolase – correlates with anti-SLA antibody reactivity. CONCLUSION: Our findings indicate that tRNP((Ser)Sec )is the most likely target of anti-SLA

    Gambling at the time of COVID-19: results from interviews in an Italian sample of gamblers

    Get PDF
    © 2022 The Author(s). Published by Elsevier Ltd on behalf of International Society for the Study of Emerging Drugs. https://creativecommons.org/licenses/by/4.0/The coronavirus pandemic affected the life of those suffering from addic- tive behaviors often confined to prolonged periods of self-isolation. To explore the variation of symptoms related to gambling, 46 outpatients of the mental health services in the Trento Province were invited to take part in a phone interview at the start of the national lockdown. Although only 2.17% increased gambling activity during this period, half of the sample (50.00%) experienced irritability, mood fluctuation (43.48%) and anxiety (39.13%). Follow-up studies should assess modifications in their behaviors that occurred after the reopening of gambling venues.Peer reviewedFinal Published versio

    MiR-494 induces metabolic changes through G6pc targeting and modulates sorafenib response in hepatocellular carcinoma

    Get PDF
    BackgroundMetabolic reprogramming is a well-known marker of cancer, and it represents an early event during hepatocellular carcinoma (HCC) development. The recent approval of several molecular targeted agents has revolutionized the management of advanced HCC patients. Nevertheless, the lack of circulating biomarkers still affects patient stratification to tailored treatments. In this context, there is an urgent need for biomarkers to aid treatment choice and for novel and more effective therapeutic combinations to avoid the development of drug-resistant phenotypes. This study aims to prove the involvement of miR-494 in metabolic reprogramming of HCC, to identify novel miRNA-based therapeutic combinations and to evaluate miR-494 potential as a circulating biomarker.MethodsBioinformatics analysis identified miR-494 metabolic targets. QPCR analysis of glucose 6-phosphatase catalytic subunit (G6pc) was performed in HCC patients and preclinical models. Functional analysis and metabolic assays assessed G6pc targeting and miR-494 involvement in metabolic changes, mitochondrial dysfunction, and ROS production in HCC cells. Live-imaging analysis evaluated the effects of miR-494/G6pc axis in cell growth of HCC cells under stressful conditions. Circulating miR-494 levels were assayed in sorafenib-treated HCC patients and DEN-HCC rats.ResultsMiR-494 induced the metabolic shift of HCC cells toward a glycolytic phenotype through G6pc targeting and HIF-1A pathway activation. MiR-494/G6pc axis played an active role in metabolic plasticity of cancer cells, leading to glycogen and lipid droplets accumulation that favored cell survival under harsh environmental conditions. High miR-494 serum levels associated with sorafenib resistance in preclinical models and in a preliminary cohort of HCC patients. An enhanced anticancer effect was observed for treatment combinations between antagomiR-494 and sorafenib or 2-deoxy-glucose in HCC cells.ConclusionsMiR-494/G6pc axis is critical for the metabolic rewiring of cancer cells and associates with poor prognosis. MiR-494 deserves attention as a candidate biomarker of likelihood of response to sorafenib to be tested in future validation studies. MiR-494 represents a promising therapeutic target for combination strategies with sorafenib or metabolic interference molecules for the treatment of HCC patients who are ineligible for immunotherapy

    The Need of Multidisciplinary Approaches and Engineering Tools for the Development and Implementation of the Smart City Paradigm

    Get PDF
    This paper is motivated by the concept that the successful, effective, and sustainable implementation of the smart city paradigm requires a close cooperation among researchers with different, complementary interests and, in most cases, a multidisciplinary approach. It first briefly discusses how such a multidisciplinary methodology, transversal to various disciplines such as architecture, computer science, civil engineering, electrical, electronic and telecommunication engineering, social science and behavioral science, etc., can be successfully employed for the development of suitable modeling tools and real solutions of such sociotechnical systems. Then, the paper presents some pilot projects accomplished by the authors within the framework of some major European Union (EU) and national research programs, also involving the Bologna municipality and some of the key players of the smart city industry. Each project, characterized by different and complementary approaches/modeling tools, is illustrated along with the relevant contextualization and the advancements with respect to the state of the art

    Chronic cholesterol administration to the brain supports complete and long-lasting cognitive and motor amelioration in Huntington's disease

    Get PDF
    : Evidence that Huntington's disease (HD) is characterized by impaired cholesterol biosynthesis in the brain has led to strategies to increase its level in the brain of the rapidly progressing R6/2 mouse model, with a positive therapeutic outcome. Here we tested the long-term efficacy of chronic administration of cholesterol to the brain of the slowly progressing zQ175DN knock-in HD mice in preventing ("early treatment") or reversing ("late treatment") HD symptoms. To do this we used the most advanced formulation of cholesterol loaded brain-permeable nanoparticles (NPs), termed hybrid-g7-NPs-chol, which were injected intraperitoneally. We show that one cycle of treatment with hybrid-g7-NPs-chol, administered in the presymptomatic ("early treatment") or symptomatic ("late treatment") stages is sufficient to normalize cognitive defects up to 5 months, as well as to improve other behavioral and neuropathological parameters. A multiple cycle treatment combining both early and late treatments ("2 cycle treatment") lasting 6 months generates therapeutic effects for more than 11 months, without severe adverse reactions. Sustained cholesterol delivery to the brain of zQ175DN mice also reduces mutant Huntingtin aggregates in both the striatum and cortex and completely normalizes synaptic communication in the striatal medium spiny neurons compared to saline-treated HD mice. Furthermore, through a meta-analysis of published and current data, we demonstrated the power of hybrid-g7-NPs-chol and other strategies able to increase brain cholesterol biosynthesis, to reverse cognitive decline and counteract the formation of mutant Huntingtin aggregates. These results demonstrate that cholesterol delivery via brain-permeable NPs is a therapeutic option to sustainably reverse HD-related behavioral decline and neuropathological signs over time, highlighting the therapeutic potential of cholesterol-based strategies in HD patients. DATA AVAILABILITY: This study does not include data deposited in public repositories. Data are available on request to the corresponding authors
    • …
    corecore