25 research outputs found

    Using human induced pluripotent stem cells to investigate neurodevelopmental effects of human cytomegalovirus

    Get PDF
    Human cytomegalovirus (HCMV) is one of the leading prenatal causes of mental retardation and congenital deformities, world-wide. Its pathogenesis has generally been investigated using animal models. Human studies in vitro have been limited to neurospheres prepared using forebrain tissues from fetal abortuses. This approach is limited and does not permit analysis of individual specific cells. We generated iPS cells from adult human fibroblasts. iPS cells were differentiated into neurospheres, that were expanded as monolayer culture of neuroprogenitors (NPs). Furthermore, neurospheres were differentiated into neurons that could be stained for Tuj1, tyrosine hydroxylase and NR4A2. Functional competency was confirmed by live imaging of intracellular calcium. NPs and neurons were infected with HCMV (MOI = 3). Cell viability was assessed by FACS analysis. Cytopathic effects of HCMV were observed on the 10th day post infection in neuroprogenitor cells. Earlier, the adherence of these cells to the matrix was reduced. Neurons were much more refractory. Reduced cell density and shortening of neuritic processes was only observed at day 15 after infection. We are presently examining the intracellular effects of HCMV. Human iPS cells can efficiently generate neurospheres, which can be expanded as almost pure cultures of neuroprogenitors or differentiated into neurons. iPS cells-derived NP and neurons offer powerful cellular models to investigate the effect of neurotropic viral agents on neurodevelopment

    Implantable cardioverter defibrillator use in arrhythmogenic right ventricular cardiomyopathy in North America and Europe

    Get PDF
    Background and aims: Implantable cardioverter-defibrillators (ICDs) are critical for preventing sudden cardiac death (SCD) in arrhythmogenic right ventricular cardiomyopathy (ARVC). This study aims to identify cross-continental differences in utilization of primary prevention ICDs and survival free from sustained ventricular arrhythmia (VA) in ARVC. Methods: This was a retrospective analysis of ARVC patients without prior VA enrolled in clinical registries from 11 countries throughout Europe and North America. Patients were classified according to whether they received treatment in North America or Europe and were further stratified by baseline predicted VA risk into low- (25%/5 years) groups. Differences in ICD implantation and survival free from sustained VA events (including appropriate ICD therapy) were assessed. Results: One thousand ninety-eight patients were followed for a median of 5.1 years; 554 (50.5%) received a primary prevention ICD, and 286 (26.0%) experienced a first VA event. After adjusting for baseline risk factors, North Americans were more than three times as likely to receive ICDs {hazard ratio (HR) 3.1 [95% confidence interval (CI) 2.5, 3.8]} but had only mildly increased risk for incident sustained VA [HR 1.4 (95% CI 1.1, 1.8)]. North Americans without ICDs were at higher risk for incident sustained VA [HR 2.1 (95% CI 1.3, 3.4)] than Europeans. Conclusions: North American ARVC patients were substantially more likely than Europeans to receive primary prevention ICDs across all arrhythmic risk strata. A lower rate of ICD implantation in Europe was not associated with a higher rate of VA events in those without ICDs

    Implantable cardioverter defibrillator use in arrhythmogenic right ventricular cardiomyopathy in North America and Europe

    Get PDF
    BACKGROUND AND AIMS: Implantable cardioverter-defibrillators (ICDs) are critical for preventing sudden cardiac death (SCD) in arrhythmogenic right ventricular cardiomyopathy (ARVC). This study aims to identify cross-continental differences in utilization of primary prevention ICDs and survival free from sustained ventricular arrhythmia (VA) in ARVC. METHODS: This was a retrospective analysis of ARVC patients without prior VA enrolled in clinical registries from 11 countries throughout Europe and North America. Patients were classified according to whether they received treatment in North America or Europe and were further stratified by baseline predicted VA risk into low- (25%/5 years) groups. Differences in ICD implantation and survival free from sustained VA events (including appropriate ICD therapy) were assessed. RESULTS: One thousand ninety-eight patients were followed for a median of 5.1 years; 554 (50.5%) received a primary prevention ICD, and 286 (26.0%) experienced a first VA event. After adjusting for baseline risk factors, North Americans were more than three times as likely to receive ICDs {hazard ratio (HR) 3.1 [95% confidence interval (CI) 2.5, 3.8]} but had only mildly increased risk for incident sustained VA [HR 1.4 (95% CI 1.1, 1.8)]. North Americans without ICDs were at higher risk for incident sustained VA [HR 2.1 (95% CI 1.3, 3.4)] than Europeans. CONCLUSIONS: North American ARVC patients were substantially more likely than Europeans to receive primary prevention ICDs across all arrhythmic risk strata. A lower rate of ICD implantation in Europe was not associated with a higher rate of VA events in those without ICDs

    Detection of resistance protein A (MxA) in paper-based immunoassays with surface enhanced Raman spectroscopy with AuAg nanoshells

    No full text
    Myxovirus protein A (MxA) is a biomarker that can be used to distinguish between viral and bacterial infections. While MxA lateral flow assays (LFAs) have been successfully used for viral vs. bacterial differential diagnosis for children, the clinically relevant level of MxA for adults has been reported to be 100 times lower, which is too low for traditional LFAs. We present results applying the use of surface enhanced Raman spectroscopy (SERS) to detect MxA. AuAg nanoshells (AuAg NSs) were used to enhance the Raman signal of mercaptobenzoic acid (4-MBA), enabling readout by SERS. The AuAg NSs were conjugated to antibodies for the biomarker of interest, resulting in a “nanotag”, that could be used in a dipstick immunoassay for detection. We first optimized the nanotag parameters using anti-human IgG/human IgG as a model antibody/antigen system, and then demonstrated detection of MxA using anti-MxA antibodies. We show that SERS readout of immunoassays for MxA can quantify MxA levels at clinically relevant levels for adult viral infection.This work was carried out within the “Doctorat en Quìmica” PhD programme of Universitat Autònoma de Barcelona, supported by the Spanish MINECO (MAT2015-70725-R) and from the Catalan Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR-143). Financial support from the HISENTS (685817) Project financed by the European Community under H20202 Capacities Programme is gratefully acknowledged. It was also funded by the CERCA Program/Generalitat de Catalunya. ICN2 acknowledges the support of the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grant SEV2201320295. CRQ was funded by a Rafael del Pino Fellowship, a UMass Boston Beacon Student Success Fellowship and a Goranson Award. BML was funded by a fellowship from Ronald E. McNair grant (P217A170241), Beacon Student Success Fellowship, and an Oracle/Sanofi student fellowship.Peer reviewe

    Rapid Discovery of Functional Small Molecule Ligands against Proteomic Targets through Library-Against-Library Screening

    No full text
    Identifying “druggable” targets and their corresponding therapeutic agents are two fundamental challenges in drug discovery research. The one-bead-one-compound (OBOC) combinatorial library method has been developed to discover peptides or small molecules that bind to a specific target protein or elicit a specific cellular response. The phage display cDNA expression proteome library method has been employed to identify target proteins that interact with specific compounds. Here, we combined these two high-throughput approaches, efficiently interrogated approximately 10<sup>13</sup> possible molecular interactions, and identified 91 small molecule compound beads that interacted strongly with the phage library. Of 19 compounds resynthesized, 4 were cytotoxic against cancer cells; one of these compounds was found to interact with EIF5B and inhibit protein translation. As more binding pairs are confirmed and evaluated, the “library-against-library” screening approach and the resulting small molecule–protein domain interaction database may serve as a valuable tool for basic research and drug development
    corecore