49 research outputs found

    Mobility of thorium ions in liquid xenon

    Full text link
    We present a measurement of the 226^{226}Th ion mobility in LXe at 163.0 K and 0.9 bar. The result obtained, 0.240±\pm0.011 (stat) ±\pm0.011 (syst) cm2^{2}/(kV-s), is compared with a popular model of ion transport.Comment: 6.5 pages,

    Aqueous and gaseous nitrogen losses induced by fertilizer application

    Get PDF
    In recent years concern has grown over the contribution of nitrogen (N) fertilizer use to nitrate (NO{sub 3}{sup -}) water pollution and nitrous oxide (N{sub 2}O), nitric oxide (NO), and ammonia (NH{sub 3}) atmospheric pollution. Characterizing soil N effluxes is essential in developing a strategy to mitigate N leaching and emissions to the atmosphere. In this paper, a previously described and tested mechanistic N cycle model (TOUGHREACT-N) was successfully tested against additional observations of soil pH and N{sub 2}O emissions after fertilization and irrigation, and before plant emergence. We used TOUGHREACT-N to explain the significantly different N gas emissions and nitrate leaching rates resulting from the different N fertilizer types, application methods, and soil properties. The N{sub 2}O emissions from NH{sub 4}{sup +}-N fertilizer were higher than from urea and NO{sub 3}{sup -}-N fertilizers in coarse-textured soils. This difference increased with decreases in fertilization application rate and increases in soil buffering capacity. In contrast to methods used to estimate global terrestrial gas emissions, we found strongly non-linear N{sub 2}O emissions as a function of fertilizer application rate and soil calcite content. Speciation of predicted gas N flux into N{sub 2}O and N{sub 2} depended on pH, fertilizer form, and soil properties. Our results highlighted the need to derive emission and leaching factors that account for fertilizer type, application method, and soil properties

    3,3′-Diindolylmethane Is a Novel Mitochondrial H +

    No full text

    Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation

    No full text
    A previous functional imaging study demonstrated greater female response in the anterior insula and thalamus and left prefrontal activation in men and right prefrontal activation in women during equal heat intensity but unequal pain experience. For the current study, subjective intensities of noxious heat delivered to the back of the right hand were equalized across subjects, and regional cerebral blood flow was recorded by using positron emission tomography. The female subjects required less laser energy before reporting pain, but the difference was not significant. Correlation of regional cerebral blood flow with subjective pain experience in the whole group showed significant bilateral responses in the parietal, lateral premotor, prefrontal, secondary somatosensory, anterior cingulate and insula cortices, as well as the thalamus. There was significantly greater activation in the left, contralateral, prefrontal, primary and secondary somatosensory, parietal, and insula cortices in the male subjects compared with the female subjects and greater response in the perigenual cingulate cortex in the female subjects. Our study is the first to associate consistent pain experience with gender differences in central response. These differences may relate to differential processing of acute pain with implications for clinical disorders that show a female dominance. The subtle behavioral differences and inconsistent findings across studies, however, suggest the need for caution and further experimentation before speculating further
    corecore