14,571 research outputs found

    Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation

    Get PDF
    The gravitational radiation originating from a compact binary system in circular orbit is usually expressed as an infinite sum over radiative multipole moments. In a slow-motion approximation, each multipole moment is then expressed as a post-Newtonian expansion in powers of v/c, the ratio of the orbital velocity to the speed of light. The bare multipole truncation of the radiation consists in keeping only the leading-order term in the post-Newtonian expansion of each moment, but summing over all the multipole moments. In the case of binary systems with small mass ratios, the bare multipole series was shown in a previous paper to converge for all values v/c < 2/e, where e is the base of natural logarithms. In this paper, we extend the analysis to a dressed multipole truncation of the radiation, in which the leading-order moments are corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the dressed multipole series converges also for all values v/c < 2/e, and that it coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur

    Accurate implementation of leaping in space: The spatial partitioned-leaping algorithm

    Full text link
    There is a great need for accurate and efficient computational approaches that can account for both the discrete and stochastic nature of chemical interactions as well as spatial inhomogeneities and diffusion. This is particularly true in biology and nanoscale materials science, where the common assumptions of deterministic dynamics and well-mixed reaction volumes often break down. In this article, we present a spatial version of the partitioned-leaping algorithm (PLA), a multiscale accelerated-stochastic simulation approach built upon the tau-leaping framework of Gillespie. We pay special attention to the details of the implementation, particularly as it pertains to the time step calculation procedure. We point out conceptual errors that have been made in this regard in prior implementations of spatial tau-leaping and illustrate the manifestation of these errors through practical examples. Finally, we discuss the fundamental difficulties associated with incorporating efficient exact-stochastic techniques, such as the next-subvolume method, into a spatial-leaping framework and suggest possible solutions.Comment: 15 pages, 9 figures, 2 table

    Delivery performance of conventional aircraft by terminal-area, time-based air traffic control: A real-time simulation evaluation

    Get PDF
    A description and results are presented of a study to measure the performance and reaction of airline flight crews, in a full workload DC-9 cockpit, flying in a real-time simulation of an air traffic control (ATC) concept called Traffic Intelligence for the Management of Efficient Runway-scheduling (TIMER). Experimental objectives were to verify earlier fast-time TIMER time-delivery precision results and obtain data for the validation or refinement of existing computer models of pilot/airborne performance. Experimental data indicated a runway threshold, interarrival-time-error standard deviation in the range of 10.4 to 14.1 seconds. Other real-time system performance parameters measured include approach speeds, response time to controller turn instructions, bank angles employed, and ATC controller message delivery-time errors

    Omnidirectional Sensory and Motor Volumes in Electric Fish

    Get PDF
    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals

    High resolution observations of friction-induced oxide and its interaction with the worn surface

    Get PDF
    A detailed transmission electron microscopy study of oxide and oxygen-containing phase formation during the sliding wear of metals, composites and coatings is provided. A wide range of different materials types are reported in order to compare and contrast their oxidational wear behaviour: a low carbon stainless steel, a H21 tool steel containing 7%TiC particles, a 17%Cr white iron,an Al–Si/30%SiC composite, an Al–alloy (6092)–15%Ni3Al composite and finally a 3rd generation TiAlN/CrN ‘superhard’ multilayer coating. For the ferrous alloys, nanoscale oxides and oxygen-containing phases were formed that exhibited excellent adhesion to the substrate. In all cases, an increase in oxide coverage of the surface was associated with a decrease in Lancaster wear coefficient. The oxide at the surface of the 316L and H21+7%TiC was found to deform with the substrate, forming a mechanically mixed layer that enhanced surface wear resistance. Evidence of oxidational wear is presented for the wear of the Al–Si–30%SiC composite, but this did not give a beneficial effect in wear, a result of the brittle nature of the oxide that resulted in detachment of fine (150nm) thick fragments. The worn surface of the Al–alloy (6092)–15%Ni3Al and TiAlN/CrN coating was characterized by reaction with the counterface and subsequent oxidation, the product of which enhanced wear resistance. The observations are related to the classical theory of oxidational wear

    Survey of Missouri restaurants on use of turkey products

    Get PDF
    Cover title."This Special report is the third and final publication on the use of turkey products in Missouri. Previous publications available ... include: 'An institutional survey of the use of turkey products in Missouri' SR 137, January 1972 and 'Turkey products in the retail store,' SR 150, January 1973"--P. [2] of cover

    Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada

    Get PDF
    Concentrations of 7Be and 210Pb in 2 years of weekly high-volume aerosol samples collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We observed a broad winter peak in 210Pb concentration and a spring peak in 7Be. These peaks were similar in magnitude and duration to previously reported results for a number of stations in the Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) were well correlated with those of 7Be; the atom ratio 10Be/7Be was nearly constant at 2.2 throughout the year. This relatively high value of 10Be/7Be indicates that the stratosphere must constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. A simple mixing model based on the small seasonal variations of 10Be/7Be indicates an approximately twofold increase of stratospheric influence in the free troposphere in late summer. The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical mixing in rather than stratospheric injections into the troposphere. We have merged the results of the Be-based mixing model with weekly O3 soundings to assess Arctic stratospheric impact on the surface O3 budget at Alert. The resulting estimates indicate that stratospheric inputs can account for a maximum of 10-15% of the 03 at the surface in spring and for less during the rest of the year. These estimates are most uncertain during the winter. The combination of Be isotopic measurements and O3 vertical profiles could allow quantification of the contributions of O3 from the Arctic stratosphere and lower latitude regions to the O3 budget in the Arctic troposphere. Although at present the lack of a quantitative understanding of the temporal variation of O3 lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples of the power of this approach are given

    The role of telemedicine in the delivery of health care in the COVID‐19 pandemic

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162731/2/hae14044.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162731/1/hae14044_am.pd

    The Association Between the Long-Term Change in Directly Measured Cardiorespiratory Fitness and Mortality Risk

    Full text link
    Introduction: There is a strong inverse association between cardiorespiratory fitness (CRF) and mortality outcomes. This relationship has predominantly been assessed cross-sectionally, however low CRF is a modifiable risk factor, thus assessing this association using a single baseline measure may be sub-optimal. Purpose: To examine the association of the long-term change in CRF, measured using cardiopulmonary exercise testing (CPX) with all-cause and disease-specific mortality. Methods: Participants included 833 apparently healthy men and women (42.9±10.8 years) who underwent two maximal CPXs, the second CPX being ≥ 1 year following the baseline assessment. Participants were followed for 17.7 ± 11.8 years for allcause, cardiovascular disease (CVD), and cancer mortality. Cox-proportional hazard models were performed to determine the association between the change in CRF, computed as visit 1 (V1) peak oxygen consumption (VO2peak (ml·kg-1·min-1)) – visit 2 (V2) VO2peak, and mortality outcomes. Results: During follow-up, 172 participants died. Overall, the change in CPX-derived CRF was inversely related to all-cause, CVD, and cancer mortality (p\u3c0.05). Each 1 ml·kg-1·min-1 increase was associated with a 10.8, 14.7, and 15.9% reductions in allcause, CVD, and cancer mortality, respectively. The inverse relationship between CRF and all-cause mortality remained significant (p\u3c0.05) when men and women were examined independently, after adjusting for years since first CPX, baseline VO2peak, and age. Conclusion: Long-term changes in CRF were inversely related to mortality outcomes, and mortality was better predicted by CRF measured at subsequent examination than baseline CRF. These findings support the recent American Heart Association scientific statement advocating CRF as a clinical vital sign that should be assessed routinely in clinical practice, as well as support regular participation in physical activity to maintain adequate CRF levels across the lifespan
    corecore