38 research outputs found
Socio-demographic and trauma-related predictors of depression within eight weeks of motor vehicle collision in the AURORA study.
BACKGROUND: This is the first report on the association between trauma exposure and depression from the Advancing Understanding of RecOvery afteR traumA(AURORA) multisite longitudinal study of adverse post-traumatic neuropsychiatric sequelae (APNS) among participants seeking emergency department (ED) treatment in the aftermath of a traumatic life experience. METHODS: We focus on participants presenting at EDs after a motor vehicle collision (MVC), which characterizes most AURORA participants, and examine associations of participant socio-demographics and MVC characteristics with 8-week depression as mediated through peritraumatic symptoms and 2-week depression. RESULTS: Eight-week depression prevalence was relatively high (27.8%) and associated with several MVC characteristics (being passenger v. driver; injuries to other people). Peritraumatic distress was associated with 2-week but not 8-week depression. Most of these associations held when controlling for peritraumatic symptoms and, to a lesser degree, depressive symptoms at 2-weeks post-trauma. CONCLUSIONS: These observations, coupled with substantial variation in the relative strength of the mediating pathways across predictors, raises the possibility of diverse and potentially complex underlying biological and psychological processes that remain to be elucidated in more in-depth analyses of the rich and evolving AURORA database to find new targets for intervention and new tools for risk-based stratification following trauma exposure
Internal capsule microstructure mediates the relationship between childhood maltreatment and PTSD following adulthood trauma exposure.
Childhood trauma is a known risk factor for trauma and stress-related disorders in adulthood. However, limited research has investigated the impact of childhood trauma on brain structure linked to later posttraumatic dysfunction. We investigated the effect of childhood trauma on white matter microstructure after recent trauma and its relationship with future posttraumatic dysfunction among trauma-exposed adult participants (n = 202) recruited from emergency departments as part of the AURORA Study. Participants completed self-report scales assessing prior childhood maltreatment within 2-weeks in addition to assessments of PTSD, depression, anxiety, and dissociation symptoms within 6-months of their traumatic event. Fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI) collected at 2-weeks and 6-months was used to index white matter microstructure. Childhood maltreatment load predicted 6-month PTSD symptoms (b = 1.75, SE = 0.78, 95% CI = [0.20, 3.29]) and inversely varied with FA in the bilateral internal capsule (IC) at 2-weeks (p = 0.0294, FDR corrected) and 6-months (p = 0.0238, FDR corrected). We observed a significant indirect effect of childhood maltreatment load on 6-month PTSD symptoms through 2-week IC microstructure (b = 0.37, Boot SE = 0.18, 95% CI = [0.05, 0.76]) that fully mediated the effect of childhood maltreatment load on PCL-5 scores (b = 1.37, SE = 0.79, 95% CI = [-0.18, 2.93]). IC microstructure did not mediate relationships between childhood maltreatment and depressive, anxiety, or dissociative symptomatology. Our findings suggest a unique role for IC microstructure as a stable neural pathway between childhood trauma and future PTSD symptoms following recent trauma. Notably, our work did not support roles of white matter tracts previously found to vary with PTSD symptoms and childhood trauma exposure, including the cingulum bundle, uncinate fasciculus, and corpus callosum. Given the IC contains sensory fibers linked to perception and motor control, childhood maltreatment might impact the neural circuits that relay and process threat-related inputs and responses to trauma
A rare mutation in SMAD9 associated with high bone mass identifies the SMAD-dependent BMP signalling pathway as a potential anabolic target for osteoporosis
Novel anabolic drug targets are needed to treat osteoporosis. Having established a large national cohort with unexplained high bone mass (HBM), we aimed to identify a novel monogenic cause of HBM and provide insight into a regulatory pathway potentially amenable to therapeutic intervention. We investigated a pedigree with unexplained HBM in whom previous sequencing had excluded known causes of monogenic HBM. Whole exome sequencing identified a rare (minor allele frequency 0.0023), highly evolutionarily conserved missense mutation in SMAD9 (c.65T>C, p.Leu22Pro) segregating with HBM in this autosomal dominant family. The same mutation was identified in another two unrelated individuals both with HBM. In silico protein modeling predicts the mutation severely disrupts the MH1 DNA-binding domain of SMAD9. Affected individuals have bone mineral density (BMD) Z-scores +3 to +5, mandible enlargement, a broad frame, torus palatinus/mandibularis, pes planus, increased shoe size, and a tendency to sink when swimming. Peripheral quantitative computed tomography (pQCT) measurement demonstrates increased trabecular volumetric BMD and increased cortical thickness conferring greater predicted bone strength; bone turnover markers are low/normal. Notably, fractures and nerve compression are not found. Both genome-wide and gene-based association testing involving estimated BMD measured at the heel in 362,924 white British subjects from the UK Biobank Study showed strong associations with SMAD9 (P-GWAS = 6 x 10(-16); P-GENE = 8 x 10(-17)). Furthermore, we found Smad9 to be highly expressed in both murine cortical bone-derived osteocytes and skeletal elements of zebrafish larvae. Our findings support SMAD9 as a novel HBM gene and a potential novel osteoanabolic target for osteoporosis therapeutics. SMAD9 is thought to inhibit bone morphogenetic protein (BMP)-dependent target gene transcription to reduce osteoblast activity. Thus, we hypothesize SMAD9 c.65T>C is a loss-of-function mutation reducing BMP inhibition. Lowering SMAD9 as a potential novel anabolic mechanism for osteoporosis therapeutics warrants further investigation. (c) 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research
Prior Sexual Trauma Exposure Impacts Posttraumatic Dysfunction and Neural Circuitry Following a Recent Traumatic Event in the AURORA Study
Background: Prior sexual trauma (ST) is associated with greater risk for posttraumatic stress disorder after a subsequent traumatic event; however, the underlying neurobiological mechanisms remain opaque. We investigated longitudinal posttraumatic dysfunction and amygdala functional dynamics following admission to an emergency department for new primarily nonsexual trauma in participants with and without previous ST.
Methods: Participants (N = 2178) were recruited following acute trauma exposure (primarily motor vehicle collision). A subset (n = 242) completed magnetic resonance imaging that included a fearful faces task and a resting-state scan 2 weeks after the trauma. We investigated associations between prior ST and several dimensions of posttraumatic symptoms over 6 months. We further assessed amygdala activation and connectivity differences between groups with or without prior ST.
Results: Prior ST was associated with greater posttraumatic depression (F1,1120 = 28.35, p = 1.22 × 10−7, ηp2 = 0.06), anxiety (F1,1113 = 17.43, p = 3.21 × 10−5, ηp2 = 0.05), and posttraumatic stress disorder (F1,1027 = 11.34, p = 7.85 × 10−4, ηp2 = 0.04) severity and more maladaptive beliefs about pain (F1,1113 = 8.51, p = .004, ηp2 = 0.02) but was not related to amygdala reactivity to fearful versus neutral faces (all ps \u3e .05). A secondary analysis revealed an interaction between ST and lifetime trauma load on the left amygdala to visual cortex connectivity (peak Z value: −4.41, corrected p \u3c .02).
Conclusions: Findings suggest that prior ST is associated with heightened posttraumatic dysfunction following a new trauma exposure but not increased amygdala activity. In addition, ST may interact with lifetime trauma load to alter neural circuitry in visual processing regions following acute trauma exposure. Further research should probe the relationship between trauma type and visual circuitry in the acute aftermath of trauma
Structural covariance of the ventral visual stream predicts posttraumatic intrusion and nightmare symptoms: a multivariate data fusion analysis
Visual components of trauma memories are often vividly re-experienced by survivors with deleterious consequences for normal function. Neuroimaging research on trauma has primarily focused on threat-processing circuitry as core to trauma-related dysfunction. Conversely, limited attention has been given to visual circuitry which may be particularly relevant to posttraumatic stress disorder (PTSD). Prior work suggests that the ventral visual stream is directly related to the cognitive and affective disturbances observed in PTSD and may be predictive of later symptom expression. The present study used multimodal magnetic resonance imaging data (n = 278) collected two weeks after trauma exposure from the AURORA study, a longitudinal, multisite investigation of adverse posttraumatic neuropsychiatric sequelae. Indices of gray and white matter were combined using data fusion to identify a structural covariance network (SCN) of the ventral visual stream 2 weeks after trauma. Participant\u27s loadings on the SCN were positively associated with both intrusion symptoms and intensity of nightmares. Further, SCN loadings moderated connectivity between a previously observed amygdala-hippocampal functional covariance network and the inferior temporal gyrus. Follow-up MRI data at 6 months showed an inverse relationship between SCN loadings and negative alterations in cognition in mood. Further, individuals who showed decreased strength of the SCN between 2 weeks and 6 months had generally higher PTSD symptom severity over time. The present findings highlight a role for structural integrity of the ventral visual stream in the development of PTSD. The ventral visual stream may be particularly important for the consolidation or retrieval of trauma memories and may contribute to efficient reactivation of visual components of the trauma memory, thereby exacerbating PTSD symptoms. Potentially chronic engagement of the network may lead to reduced structural integrity which becomes a risk factor for lasting PTSD symptoms
The AURORA Study: A Longitudinal, Multimodal Library of Brain Biology and Function after Traumatic Stress Exposure
Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among civilian trauma survivors and military veterans. These APNS, as traditionally classified, include posttraumatic stress, postconcussion syndrome, depression, and regional or widespread pain. Traditional classifications have come to hamper scientific progress because they artificially fragment APNS into siloed, syndromic diagnoses unmoored to discrete components of brain functioning and studied in isolation. These limitations in classification and ontology slow the discovery of pathophysiologic mechanisms, biobehavioral markers, risk prediction tools, and preventive/treatment interventions. Progress in overcoming these limitations has been challenging because such progress would require studies that both evaluate a broad spectrum of posttraumatic sequelae (to overcome fragmentation) and also perform in-depth biobehavioral evaluation (to index sequelae to domains of brain function). This article summarizes the methods of the Advancing Understanding of RecOvery afteR traumA (AURORA) Study. AURORA conducts a large-scale (n = 5000 target sample) in-depth assessment of APNS development using a state-of-the-art battery of self-report, neurocognitive, physiologic, digital phenotyping, psychophysical, neuroimaging, and genomic assessments, beginning in the early aftermath of trauma and continuing for 1 year. The goals of AURORA are to achieve improved phenotypes, prediction tools, and understanding of molecular mechanisms to inform the future development and testing of preventive and treatment interventions
Post-traumatic stress and future substance use outcomes: leveraging antecedent factors to stratify risk
BackgroundPost-traumatic stress disorder (PTSD) and substance use (tobacco, alcohol, and cannabis) are highly comorbid. Many factors affect this relationship, including sociodemographic and psychosocial characteristics, other prior traumas, and physical health. However, few prior studies have investigated this prospectively, examining new substance use and the extent to which a wide range of factors may modify the relationship to PTSD.MethodsThe Advancing Understanding of RecOvery afteR traumA (AURORA) study is a prospective cohort of adults presenting at emergency departments (N = 2,943). Participants self-reported PTSD symptoms and the frequency and quantity of tobacco, alcohol, and cannabis use at six total timepoints. We assessed the associations of PTSD and future substance use, lagged by one timepoint, using the Poisson generalized estimating equations. We also stratified by incident and prevalent substance use and generated causal forests to identify the most important effect modifiers of this relationship out of 128 potential variables.ResultsAt baseline, 37.3% (N = 1,099) of participants reported likely PTSD. PTSD was associated with tobacco frequency (incidence rate ratio (IRR): 1.003, 95% CI: 1.00, 1.01, p = 0.02) and quantity (IRR: 1.01, 95% CI: 1.001, 1.01, p = 0.01), and alcohol frequency (IRR: 1.002, 95% CI: 1.00, 1.004, p = 0.03) and quantity (IRR: 1.003, 95% CI: 1.001, 1.01, p = 0.001), but not with cannabis use. There were slight differences in incident compared to prevalent tobacco frequency and quantity of use; prevalent tobacco frequency and quantity were associated with PTSD symptoms, while incident tobacco frequency and quantity were not. Using causal forests, lifetime worst use of cigarettes, overall self-rated physical health, and prior childhood trauma were major moderators of the relationship between PTSD symptoms and the three substances investigated.ConclusionPTSD symptoms were highly associated with tobacco and alcohol use, while the association with prospective cannabis use is not clear. Findings suggest that understanding the different risk stratification that occurs can aid in tailoring interventions to populations at greatest risk to best mitigate the comorbidity between PTSD symptoms and future substance use outcomes. We demonstrate that this is particularly salient for tobacco use and, to some extent, alcohol use, while cannabis is less likely to be impacted by PTSD symptoms across the strata
Neighborhood Disadvantage and Neural Correlates of Threat and Reward Processing in Survivors of Recent Trauma
IMPORTANCE: Differences in neighborhood socioeconomic characteristics are important considerations in understanding differences in risk vs resilience in mental health. Neighborhood disadvantage is associated with alterations in the function and structure of threat neurocircuitry.
OBJECTIVE: To investigate associations of neighborhood disadvantage with white and gray matter and neural reactivity to positive and negative stimuli in the context of trauma exposure.
DESIGN, SETTING, AND PARTICIPANTS: In this cross-sectional study, survivors of trauma who completed sociodemographic and posttraumatic symptom assessments and neuroimaging were recruited as part of the Advancing Understanding of Recovery After Trauma (AURORA) study between September 2017 and June 2021. Data analysis was performed from October 25, 2022, to February 15, 2023.
EXPOSURE: Neighborhood disadvantage was measured with the Area Deprivation Index (ADI) for each participant home address.
MAIN OUTCOMES AND MEASURES: Participants completed separate threat and reward tasks during functional magnetic resonance imaging. Diffusion-weighted and high-resolution structural images were also collected. Linear models assessed the association of ADI with reactivity, microstructure, and macrostructure of a priori regions of interest after adjusting for income, lifetime trauma, sex at birth, and age. A moderated-mediation model tested whether ADI was associated with neural activity via microstructural changes and if this was modulated by PTSD symptoms.
RESULTS: A total of 280 participants (183 females [65.4%]; mean [SD] age, 35.39 [13.29] years) completed the threat task and 244 participants (156 females [63.9%]; mean [SD] age, 35.10 [13.26] years) completed the reward task. Higher ADI (per 1-unit increase) was associated with greater insula (t274 = 3.20; β = 0.20; corrected P = .008) and anterior cingulate cortex (ACC; t274 = 2.56; β = 0.16; corrected P = .04) threat-related activity after considering covariates, but ADI was not associated with reward reactivity. Greater disadvantage was also associated with altered microstructure of the cingulum bundle (t274 = 3.48; β = 0.21; corrected P = .001) and gray matter morphology of the ACC (cortical thickness: t273 = -2.29; β = -0.13; corrected P = .02; surface area: t273 = 2.53; β = 0.13; corrected P = .02). The moderated-mediation model revealed that ADI was associated with ACC threat reactivity via cingulum microstructural changes (index of moderated mediation = -0.02). However, this mediation was only present in individuals with greater PTSD symptom severity (at the mean: β = -0.17; standard error = 0.06, t= -2.28; P = .007; at 1 SD above the mean: β = -0.28; standard error = 0.08; t = -3.35; P \u3c .001).
CONCLUSIONS AND RELEVANCE: In this study, neighborhood disadvantage was associated with neurobiology that supports threat processing, revealing associations of neighborhood disadvantage with neural susceptibility for PTSD and suggesting how altered structure-function associations may complicate symptoms. Future work should investigate specific components of neighborhood disadvantage that may be associated with these outcomes
Use of Serial Smartphone-Based Assessments to Characterize Diverse Neuropsychiatric Symptom Trajectories in a Large Trauma Survivor Cohort
The authors sought to characterize adverse posttraumatic neuropsychiatric sequelae (APNS) symptom trajectories across ten symptom domains (pain, depression, sleep, nightmares, avoidance, re-experiencing, anxiety, hyperarousal, somatic, and mental/fatigue symptoms) in a large, diverse, understudied sample of motor vehicle collision (MVC) survivors. More than two thousand MVC survivors were enrolled in the emergency department (ED) and completed a rotating battery of brief smartphone-based surveys over a 2-month period. Measurement models developed from survey item responses were used in latent growth curve/mixture modeling to characterize homogeneous symptom trajectories. Associations between individual trajectories and pre-trauma and peritraumatic characteristics and traditional outcomes were compared, along with associations within and between trajectories. APNS across all ten symptom domains were common in the first two months after trauma. Many risk factors and associations with high symptom burden trajectories were shared across domains. Both across and within traditional diagnostic boundaries, APNS trajectory intercepts, and slopes were substantially correlated. Across all domains, symptom severity in the immediate aftermath of trauma (trajectory intercepts) had the greatest influence on the outcome. An interactive data visualization tool was developed to allow readers to explore relationships of interest between individual characteristics, symptom trajectories, and traditional outcomes ( http://itr.med.unc.edu/aurora/parcoord/ ). Individuals presenting to the ED after MVC commonly experience a broad constellation of adverse posttraumatic symptoms. Many risk factors for diverse APNS are shared. Individuals diagnosed with a single traditional outcome should be screened for others. The utility of multidimensional categorizations that characterize individuals across traditional diagnostic domains should be explored