309 research outputs found

    Tracking of Interacting Targets

    Get PDF
    In this paper we present a method for the tracking of interacting targets disregarding whether or not the targets are close to each other. The method relies on parametric modeling of assumptions about targets interactive motion. Our filtering solution incorporates the parameters of the model in the state vector to perform on-line parameter estimation and exploitation. The proposed method is applied in a simulated Multiple Target Tracking application with radar track-before-detect measurements. Numerical experiments show that this approach results in estimation error reduction, allows detection of interactive target behaviors and reduce labeling uncertainty in closely-spaced targets tracking

    Accuracy of cornea and lens biometry using anterior segment optical coherence tomography

    Get PDF
    We assess the accuracy of the Visante anterior segment optical coherence tomographer (AS-OCT) and present improved formulas for measurement of surface curvature and axial separation. Measurements are made in physical model eyes. Accuracy is compared for measurements of corneal thickness (d1) and anterior chamber depth (d2) using-built-in AS-OCT software versus the improved scheme. The improved scheme enables measurements of lens thickness (d 3) and surface curvature, in the form of conic sections specified by vertex radii and conic constants. These parameters are converted to surface coordinates for error analysis. The built-in AS-OCT software typically overestimates (mean±standard deviation(SD)]d1 by +62±4 μm and d2 by +4±88μm. The improved scheme reduces d1 (-0.4±4 μm) and d2 (0±49 μm) errors while also reducing d3 errors from +218±90 (uncorrected) to +14±123 μm (corrected). Surface x coordinate errors gradually increase toward the periphery. Considering the central 6-mm zone of each surface, the x coordinate errors for anterior and posterior corneal surfaces reached +3±10 and 0±23 μm, respectively, with the improved scheme. Those of the anterior and posterior lens surfaces reached +2±22 and +11±71 μm, respectively. Our improved scheme reduced AS-OCT errors and could, therefore, enhance pre- and postoperative assessments of keratorefractive or cataract surgery, including measurement of accommodating intraocular lenses. © 2007 Society of Photo-Optical Instrumentation Engineers

    Charge Dynamics in Cuprate Superconductors

    Full text link
    In this lecture we present some interesting issues that arise when the dynamics of the charge carriers in the CuO2_2 planes of the high temperature superconductors is considered. Based on the qualitative picture of doping, set by experiments and some previous calculations, we consider the strength of various inter and intra-cell charge transfer susceptibilities, the question of Coulomb screening and charge collective modes. The starting point is the usual p-d model extended by the long range Coulomb (LRC) interaction. Within this model it is possible to examine the case in which the LRC forces frustrate the electronic phase separation, the instability which is present in the model without an LRC interaction. While the static dielectric function in such systems is negative down to arbitrarily small wavevectors, the system is not unstable. We consider the dominant electronic charge susceptibilities and possible consequences for the lattice properties.Comment: 14 pages, 15 figures, latex, to be published in "From Quantum Mechanics to Technology", Lecture Notes in Physics, Springe

    Static wormholes on the brane inspired by Kaluza-Klein gravity

    Full text link
    We use static solutions of 5-dimensional Kaluza-Klein gravity to generate several classes of static, spherically symmetric spacetimes which are analytic solutions to the equation (4)R=0^{(4)}R = 0, where (4)R^{(4)}R is the four-dimensional Ricci scalar. In the Randall & Sundrum scenario they can be interpreted as vacuum solutions on the brane. The solutions contain the Schwarzschild black hole, and generate new families of traversable Lorenzian wormholes as well as nakedly singular spacetimes. They generalize a number of previously known solutions in the literature, e.g., the temporal and spatial Schwarzschild solutions of braneworld theory as well as the class of self-dual Lorenzian wormholes. A major departure of our solutions from Lorenzian wormholes {\it a la} Morris and Thorne is that, for certain values of the parameters of the solutions, they contain three spherical surfaces (instead of one) which are extremal and have finite area. Two of them have the same size, meet the "flare-out" requirements, and show the typical violation of the energy conditions that characterizes a wormhole throat. The other extremal sphere is "flaring-in" in the sense that its sectional area is a local maximum and the weak, null and dominant energy conditions are satisfied in its neighborhood. After bouncing back at this second surface a traveler crosses into another space which is the double of the one she/he started in. Another interesting feature is that the size of the throat can be less than the Schwarzschild radius 2M2 M, which no longer defines the horizon, i.e., to a distant observer a particle or light falling down crosses the Schwarzschild radius in a finite time

    Analysis of telephone network traffic based on a complex user network

    Full text link
    The traffic in telephone networks is analyzed in this paper. Unlike the classical traffic analysis where call blockings are due to the limited channel capacity, we consider here a more realistic cause for call blockings which is due to the way in which users are networked in a real-life human society. Furthermore, two kinds of user network, namely, the fully-connected user network and the scale-free network, are employed to model the way in which telephone users are connected. We show that the blocking probability is generally higher in the case of the scale-free user network, and that the carried traffic intensity is practically limited not only by the network capacity but also by the property of the user network.Comment: 17 pages, 9 figures, accepted for Physica

    Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation

    Get PDF
    To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model

    Wave Mechanics and General Relativity: A Rapprochement

    Full text link
    Using exact solutions, we show that it is in principle possible to regard waves and particles as representations of the same underlying geometry, thereby resolving the problem of wave-particle duality
    corecore