11,977 research outputs found

    Optical conductivity and Raman scattering of iron superconductors

    Get PDF
    We discuss how to analyze the optical conductivity and Raman spectra of multi-orbital systems using the velocity and the Raman vertices in a similar way Raman vertices were used to disentangle nodal and antinodal regions in cuprates. We apply this method to iron superconductors in the magnetic and non-magnetic states, studied at the mean field level. We find that the anisotropy in the optical conductivity at low frequencies reflects the difference between the magnetic gaps at the X and Y electron pockets. Both gaps are sampled by Raman spectroscopy. We also show that the Drude weight anisotropy in the magnetic state is sensitive to small changes in the lattice structure.Comment: 14 pages, 10 figures, as accepted in Phys. Rev. B, explanations/discussion added in Secs. II, III and V

    Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim

    Get PDF
    In classical Kaluza-Klein theory, with compactified extra dimensions and without scalar field, the rest mass as well as the electric charge of test particles are constants of motion. We show that in the case of a large extra dimension this is no longer so. We propose the Hamilton-Jacobi formalism, instead of the geodesic equation, for the study of test particles moving in a five-dimensional background metric. This formalism has a number of advantages: (i) it provides a clear and invariant definition of rest mass, without the ambiguities associated with the choice of the parameters used along the motion in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the discussion, and (iii) we avoid the difficulties associated with the "splitting" of the geodesic equation. For particles moving in a general 5D metric, we show how the effective rest mass, as measured by an observer in 4D, varies as a consequence of the large extra dimension. Also, the fifth component of the momentum changes along the motion. This component can be identified with the electric charge of test particles. With this interpretation, both the rest mass and the charge vary along the trajectory. The constant of motion is now a combination of these quantities. We study the cosmological variations of charge and rest mass in a five-dimensional bulk metric which is used to embed the standard k = 0 FRW universes. The time variations in the fine structure "constant" and the Thomson cross section are also discussed.Comment: V2: References added, discussion extended. V3 is identical to V2, references updated. To appear in General Relativity and Gravitatio

    Cosmological Implications of a Non-Separable 5D Solution of the Vacuum Einstein Field Equations

    Full text link
    An exact class of solutions of the 5D vacuum Einstein field equations (EFEs) is obtained. The metric coefficients are found to be non-separable functions of time and the extra coordinate ll and the induced metric on ll = constant hypersurfaces has the form of a Friedmann-Robertson-Walker cosmology. The 5D manifold and 3D and 4D submanifolds are in general curved, which distinguishes this solution from previous ones in the literature. The singularity structure of the manifold is explored: some models in the class do not exhibit a big bang, while other exhibit a big bang and a big crunch. For the models with an initial singularity, the equation of state of the induced matter evolves from radiation like at early epochs to Milne-like at late times and the big bang manifests itself as a singular hypersurface in 5D. The projection of comoving 5D null geodesics onto the 4D submanifold is shown to be compatible with standard 4D comoving trajectories, while the expansion of 5D null congruences is shown to be in line with conventional notions of the Hubble expansion.Comment: 8 pages, in press in J. Math. Phy

    Negaton and Positon solutions of the soliton equation with self-consistent sources

    Full text link
    The KdV equation with self-consistent sources (KdVES) is used as a model to illustrate the method. A generalized binary Darboux transformation (GBDT) with an arbitrary time-dependent function for the KdVES as well as the formula for NN-times repeated GBDT are presented. This GBDT provides non-auto-B\"{a}cklund transformation between two KdV equations with different degrees of sources and enable us to construct more general solutions with NN arbitrary tt-dependent functions. By taking the special tt-function, we obtain multisoliton, multipositon, multinegaton, multisoliton-positon, multinegaton-positon and multisoliton-negaton solutions of KdVES. Some properties of these solutions are discussed.Comment: 13 pages, Latex, no figues, to be published in J. Phys. A: Math. Ge

    Probing dynamic myocardial microstructure with cardiac magnetic resonance diffusion tensor imaging

    Get PDF
    This article is an invited editorial comment on the paper entitled “In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy” by Ferreira et al., and published as Journal of Cardiovascular Magnetic Resonance 2014; 16:87

    Late time cosmic acceleration from vacuum Brans-Dicke theory in 5D

    Full text link
    We show that the scalar-vacuum Brans-Dicke equations in 5D are equivalent to Brans-Dicke theory in 4D with a self interacting potential and an effective matter field. The cosmological implication, in the context of FRW models, is that the observed accelerated expansion of the universe comes naturally from the condition that the scalar field is not a ghost, i.e., ω>3/2\omega > - 3/2. We find an effective matter-dominated 4D universe which shows accelerated expansion if 3/2<ω<1- 3/2 < \omega < - 1. We study the question of whether accelerated expansion can be made compatible with large values of ω\omega, within the framework of a 5D scalar-vacuum Brans-Dicke theory with variable, instead of constant, parameter ω\omega. In this framework, and based on a general class of solutions of the field equations, we demonstrate that accelerated expansion is incompatible with large values of ω\omega.Comment: In V2 the summary section is expanded. To be published in Classical and Quantum Gravity

    Circuit Theory

    Get PDF
    Contains reports on three research projects.Lincoln Laboratory (Purchase Order DDL-B222)United States Department of the ArmyUnited States Department of the NavyUnited States Department of the Air Force (Contract AF19(604)-5200

    B\"{a}cklund transformations for the constrained dispersionless hierarchies and dispersionless hierarchies with self-consistent sources

    Full text link
    The B\"{a}cklund transformations between the constrained dispersionless KP hierarchy (cdKPH) and the constrained dispersionless mKP hieararchy (cdmKPH) and between the dispersionless KP hieararchy with self-consistent sources (dKPHSCS) and the dispersionless mKP hieararchy with self-consistent sources (dmKPHSCS) are constructed. The auto-B\"{a}cklund transformations for the cdmKPH and for the dmKPHSCS are also formulated.Comment: 11 page

    On The 5D Extra-Force according to Basini-Capozziello-Leon Formalism and five important features: Kar-Sinha Gravitational Bending of Light, Chung-Freese Superluminal Behaviour, Maartens-Clarkson Black Strings, Experimental measures of Extra Dimensions on board International Space Station(ISS) and the existence of the Particle ZZ due to a Higher Dimensional spacetime

    Full text link
    We use the Conformal Metric as described in Kar-Sinha work on Gravitational Bending of Light in a 5D Spacetime to recompute the equations of the 5D Force in Basini-Capozziello-Leon Formalism and we arrive at a result that possesses some advantages. The equations of the Extra Force as proposed by Leon are now more elegant in Conformal Formalism and many algebraic terms can be simplified or even suppressed. Also we recompute the Kar-Sinha Gravitational Bending of Light affected by the presence of the Extra Dimension and analyze the Superluminal Chung-Freese Features of this Formalism describing the advantages of the Chung-Freese BraneWorld when compared to other Superluminal spacetime metrics(eg:Warp Drive) and we describe why the Extra Dimension is invisible and how the Extra Dimension could be made visible at least in theory.We also examine the Maartens-Clarkson Black Holes in 5D(Black Strings) coupled to massive Kaluza-Klein graviton modes predicted by Extra Dimensions theories and we study experimental detection of Extra Dimensions on-board LIGO and LISA Space Telescopes.We also propose the use of International Space Station(ISS) to measure the additional terms(resulting from the presence of Extra Dimensions) in the Kar-Sinha Gravitational Bending of Light in Outer Space to verify if we really lives in a Higher Dimensional Spacetime.Also we demonstrate that Particle ZZ can only exists if the 5D spacetime exists.Comment: Withdrawn: author no longer wishes to post work on arXi

    High order magnon bound states in the quasi-one-dimensional antiferromagnet α\alpha-NaMnO2_2

    Full text link
    Here we report on the formation of two and three magnon bound states in the quasi-one-dimensional antiferromagnet α\alpha-NaMnO2_2, where the single-ion, uniaxial anisotropy inherent to the Mn3+^{3+} ions in this material provides a binding mechanism capable of stabilizing higher order magnon bound states. While such states have long remained elusive in studies of antiferromagnetic chains, neutron scattering data presented here demonstrate that higher order n>2n>2 composite magnons exist, and, specifically, that a weak three-magnon bound state is detected below the antiferromagnetic ordering transition of NaMnO2_2. We corroborate our findings with exact numerical simulations of a one-dimensional Heisenberg chain with easy-axis anisotropy using matrix-product state techniques, finding a good quantitative agreement with the experiment. These results establish α\alpha-NaMnO2_2 as a unique platform for exploring the dynamics of composite magnon states inherent to a classical antiferromagnetic spin chain with Ising-like single ion anisotropy.Comment: 5 pages, 4 figure
    corecore