1,746 research outputs found

    Slaves, Soldiers, Citizens: African American Artifacts of the Civil War Era

    Full text link
    Based on the exhibit Slaves, Soldiers, Citizens: African American Artifacts of the Civil War Era, this book provides the full experience of the exhibit, which was on display in Special Collections at Musselman Library November 2012- December 2013. It also includes several student essays based on specific artifacts that were part of the exhibit. Table of Contents: Introduction Angelo Scarlato, Lauren Roedner ’13 & Scott Hancock Slave Collars & Runaways: Punishment for Rebellious Slaves Jordan Cinderich ’14 Chancery Sale Poster & Auctioneer’s Coin: The Lucrative Business of Slavery Tricia Runzel ’13 Isaac J. Winters: An African American Soldier from Pennsylvania Who Fought at Petersburg Avery Lentz ’14 Basil Biggs: A Prominent African American in Gettysburg after the Battle Lauren Roedner ’13 Linton Ingram: A Former Slave Who Became a Notable African American Educator in Georgia Brian Johnson & Lincoln Fitch ’14 Uncle Tom’s Cabin Theatre Poster: Racism in Post-Emancipation Entertainment Michelle Seabrook ’13 Essay Bibliographies Grand Army of the Republic Exhibit Inventory Acknowledgmentshttps://cupola.gettysburg.edu/libexhibits/1001/thumbnail.jp

    Analysis of the Type IIn Supernova 1998S: Effects of Circumstellar Interaction on Observed Spectra

    Get PDF
    We present spectral analysis of early observations of the Type IIn supernova 1998S using the general non-local thermodynamic equilibrium atmosphere code \tt PHOENIX}. We model both the underlying supernova spectrum and the overlying circumstellar interaction region and produce spectra in good agreement with observations. The early spectra are well fit by lines produced primarily in the circumstellar region itself, and later spectra are due primarily to the supernova ejecta. Intermediate spectra are affected by both regions. A mass-loss rate of order M˙∌0.0001−0.001\dot M \sim 0.0001-0.001\msol yr−1^{-1} is inferred for a wind speed of 100-1000 \kmps. We discuss how future self-consistent models will better clarify the underlying progenitor structure.Comment: to appear in ApJ, 2001, 54

    Physical processes determine spatial structure in water temperature and residence time on a wide reef flat

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(12), (2020): e2020JC016543, https://doi.org/10.1029/2020JC016543.On coral reefs, flow determines residence time of water influencing physical and chemical environments and creating observable microclimates within the reef structure. Understanding the physical mechanisms driving environmental variability on shallow reefs, which distinguishes them from the open ocean, is important for understanding what contributes to thermal resilience of coral communities and predicting their response to future anomalies. In June 2014, a field experiment conducted at Dongsha Atoll in the northern South China Sea investigated the physical forces that drive flow over a broad shallow reef flat. Instrumentation included current and pressure sensors and a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 3‐km cross‐reef section from the lagoon to reef crest. Spectral analysis shows that while diurnal variability was significant across the reef flat—a result expected from daily solar heating—temperature also varied at higher frequencies near the reef crest. These spatially variable temperature regimes, or thermal microclimates, are influenced by circulation on the wide reef flat, with spatially and temporally variable contributions from tides, wind, and waves. Through particle tracking simulations, we find the residence time of water is shorter near the reef crest (3.6 h) than near the lagoon (8.6 h). Tidal variability in flow direction on the reef flat leads to patterns in residence time that are different than what would be predicted from unidirectional flow. Circulation on the reef also determines the source (originating from offshore vs. the lagoon) of the water present on the reef flat.We thank S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs (CTEMPs), funded by the National Science Foundation (EAR awards 1440596 and 1440506), for timely and effective provision of experimental design support, logistical support and equipment for the project. Support for S. Lentz is from NSF Grant No. OCE‐1558343. Support for A. Cohen from NSF Grant No. 1220529, by the Academia Sinica (Taiwan) through a thematic project grant to G. Wong and A. Cohen. Support for E. Reid and K. Davis is from National Science Foundation (NSF) Grant No. OCE‐1753317, and support to E. Reid from the Environmental Engineering Henry Samueli Endowed Fellowship and the UCI Oceans Graduate Fellowship.2021-05-2

    Dedicated teams to optimize quality and safety of surgery:A systematic review

    Get PDF
    BACKGROUND: A dedicated operating team is defined as a surgical team consisting of the same group of people working together over time, optimally attuned in both technical and/or communicative aspects. This can be achieved through technical and/or communicative training in a team setting. A dedicated surgical team may contribute to the optimization of healthcare quality and patient safety within the perioperative period. METHOD: A systematic review was conducted to evaluate the effects of a dedicated surgical team on clinical and performance outcomes. MEDLINE and Embase were searched on 23 June 2022. Both randomized controlled trials (RCTs) and non-randomized studies (NRSs) were included. Primary outcomes were mortality, complications and readmissions. Secondary outcomes were costs and performance measures. RESULTS: Fourteen studies were included (RCTs n = 1; NRSs n = 13). Implementation of dedicated operating teams was associated with improvements in mortality, turnover time, teamwork, communication and costs. No significant differences were observed in readmission rates and length of hospital stay. Results regarding duration, glitch counts and complications of surgery were inconclusive. Limitations include study conduct and heterogeneity between studies. CONCLUSIONS: The institution of surgical teams who followed communicative and/or technical training appeared to have beneficial effects on several clinical outcome measures. Dedicated teams provide a feasible way of improving healthcare quality and patient safety. A dose-response effect of team training was reported, but also a relapse rate, suggesting that repetitive training is of major concern to high-quality patient care. Further studies are needed to confirm these findings, due to limited level of evidence in current literature. PROSPERO REGISTRATION NUMBER: CRD42020145288

    Statistical Similarities Between WSA‐ENLIL+Cone Model and MAVEN in Situ Observations From November 2014 to March 2016

    Full text link
    Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet’s orbital location for limited time spans. Due to MAVEN’s highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars’ magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA‐ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation‐long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long‐term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.Plain Language SummaryIf we ever have a manned mission to Mars, one of the numerous concerns would be space weather conditions and their effects on spacecraft in flight. One particular element of space weather that we like to focus on is solar wind: plasma that is continuously emitted from the Sun. Solar wind can effect communication between Earth and spacecraft, GPS services, and other vital elements of space travel. We therefore want a good understanding of space weather and want to forecast conditions before ever traveling there. Currently, there are not always means to directly measure solar wind, so we rely on numerical models. In this study, we used the model called WSA‐ENLIL+Cone to compare its solar wind measurements and one of our spacecraft orbiting Mars to see how well it did and to see if we can rely on it for solar wind forecasts. As it turns out, the model can be used for forecasting baseline values of different solar wind parameters, for example, temperature, even with limited information. We show in this study that the WSA‐ENLIL+Cone model allows us to forecast solar wind conditions and helps us to understand what is going on at that seemingly barren planet.Key PointsGeneralized, extensive WEC model simulations provide analogous confidence levels and results as detailed, relatively short simulationsWSA‐ENLIL+Cone model succeeds at predicting fast solar wind radial velocityPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142959/1/swe20547.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142959/2/swe20547_am.pd

    Petrology, petrogenesis, and geochronology review of the Cenozoic adakitic rocks of northeast Iran: Implications for evolution of the northern branch of Neo-Tethys

    Get PDF
    Cenozoic adakitic rocks of the northern part of the Central Iran Structural Zone (CISZ) are among the notable geological features of the terrains in northeast Iran, so a comprehensive comparison of several of these adakitic sequences is presented. This lithogeochemical analysis is constrained to examining adakitic magmatism of the three magmatic belts within the CISZ, which from southeast to northeast and from oldest to youngest are as follows: (a) south of Shahrood-Damghan, (b) north-northwest of Sabzevar-Neyshabour, and (c) south of Qouchan and west of Esfarayen. Radiogenic isotope analysis using Rb–Sr and Sm–Nd methods show that the adakitic rocks associated with Qouchan-Esfarayen magmatism have 0.512581 to 0.51288 initial 143Nd/144Nd and 0.703903 to 0.705627 initial 87Sr/86Sr, with ΔNd −0.86 to 4.98. Adakitic rocks in south to southeast Shahrood have 0.512775 to 0.512893 initial 143Nd/144Nd and 0.703746 to 0.705314 initial 87Sr/88Sr, with ΔNd 3.69 to 6.0, and adakites emplaced into the Sabzevar ophiolite have 0.512846 to 0.512911 initial 143Nd/144Nd and 0.70379 to 0.705019 initial 87Sr/86Sr contents with ΔNd of 5.26 to 6.54. Isotopic initial ratios of Nd and Sr support an origin involving partial melting of the subducting oceanic lithosphere of the northern branch of Neo-Tethys and the associated suprasubduction mantle wedge in producing these adakitic rocks

    Gravitational Waves from Core Collapse Supernovae

    Full text link
    We present the gravitational wave signatures for a suite of axisymmetric core collapse supernova models with progenitors masses between 12 and 25 solar masses. These models are distinguished by the fact they explode and contain essential physics (in particular, multi-frequency neutrino transport and general relativity) needed for a more realistic description. Thus, we are able to compute complete waveforms (i.e., through explosion) based on non-parameterized, first-principles models. This is essential if the waveform amplitudes and time scales are to be computed more precisely. Fourier decomposition shows that the gravitational wave signals we predict should be observable by AdvLIGO across the range of progenitors considered here. The fundamental limitation of these models is in their imposition of axisymmetry. Further progress will require counterpart three-dimensional models.Comment: 10 pages, 5 figure

    PHotometry Assisted Spectral Extraction (PHASE) and identification of SNLS supernovae

    Full text link
    Aim: We present new extraction and identification techniques for supernova (SN) spectra developed within the Supernova Legacy Survey (SNLS) collaboration. Method: The new spectral extraction method takes full advantage of photometric information from the Canada-France-Hawai telescope (CFHT) discovery and reference images by tracing the exact position of the supernova and the host signals on the spectrogram. When present, the host spatial profile is measured on deep multi-band reference images and is used to model the host contribution to the full (supernova + host) signal. The supernova is modelled as a Gaussian function of width equal to the seeing. A chi-square minimisation provides the flux of each component in each pixel of the 2D spectrogram. For a host-supernova separation greater than <~ 1 pixel, the two components are recovered separately and we do not use a spectral template in contrast to more standard analyses. This new procedure permits a clean extraction of the supernova separately from the host in about 70% of the 3rd year ESO/VLT spectra of the SNLS. A new supernova identification method is also proposed. It uses the SALT2 spectrophotometric template to combine the photometric and spectral data. A galaxy template is allowed for spectra for which a separate extraction of the supernova and the host was not possible. Result: These new techniques have been tested against more standard extraction and identification procedures. They permit a secure type and redshift determination in about 80% of cases. The present paper illustrates their performances on a few sample spectra.Comment: 27 pages, 18 Figures, 1 Table. Accepted for publication in A&

    Evidence for Asphericity in the Type IIn Supernova 1998S

    Get PDF
    We present optical spectropolarimetry obtained at the Keck-II 10-m telescope on 1998 March 7 UT along with total flux spectra spanning the first 494 days after discovery (1998 March 2 UT) of the peculiar type IIn supernova (SN) 1998S. The SN is found to exhibit a high degree of linear polarization, implying significant asphericity for its continuum-scattering environment. Prior to removal of the interstellar polarization, the polarization spectrum is characterized by a flat continuum (at p ~ 2%) with distinct changes in polarization associated with both the broad (FWZI >= 20,000 km/s) and narrow (unresolved, FWHM < 300 km/s) line emission seen in the total flux spectrum. When analyzed in terms of a polarized continuum with unpolarized broad-line recombination emission, an intrinsic continuum polarization of p ~ 3% results (the highest yet found for a SN), suggesting a global asphericity of >= 45% from the oblate, electron-scattering dominated models of Hoflich (1991). The smooth, blue continuum evident at early times is shown to be inconsistent with a reddened, single-temperature blackbody, instead having a color temperature that increases with decreasing wavelength. Broad emission-line profiles with distinct blue and red peaks are seen in the total flux spectra at later times, perhaps suggesting a disk-like or ring-like morphology for the dense (n_e ~ 10^7 cm^{-3}) circumstellar medium. Implications of the circumstellar scattering environment for the spectropolarimetry are discussed, as are the effects of uncertain removal of interstellar polarization.Comment: 25 pages + 2 tables + 14 figures, Submitted to The Astrophysical Journa
    • 

    corecore