31 research outputs found

    Models for Prediction of Factor VIII Half-Life in Severe Haemophiliacs: Distinct Approaches for Blood Group O and Non-O Patients

    Get PDF
    BACKGROUND: Von Willebrand factor (VWF) is critical for the in vivo survival of factor VIII (FVIII). Since FVIII half-life correlates with VWF-antigen pre-infusion levels, we hypothesized that VWF levels are useful to predict FVIII half-life. METHODOLOGY: Standardized half-life studies and analysis of pre-infusion VWF and VWF-propeptide levels were performed in a cohort of 38 patients with severe haemophilia A (FVIII <1 IU/ml), aged 15-44 years. Nineteen patients had blood-group O. Using multivariate linear regression-analysis (MVLR-analysis), the association of VWF-antigen, VWF-propeptide, age and body-weight with FVIII half-life was evaluated. PRINCIPAL FINDINGS: FVIII half-life was shorter in blood-group O-patients compared to non-O-patients (11.5+/-2.6 h versus 14.3+/-3.0 h; p = 0.004). VWF-antigen levels correlated with FVIII half-life considerably better in patients with blood-group non-O than O (Pearson-rank = 0.70 and 0.47, respectively). Separate prediction models evolved from MVLR-analysis for blood-group O and non-O patients, based on VWF-antigen and VWF/propeptide ratio. Predicted half-lives deviated less than 3 h of observed half-life in 34/38 patients (89%) or less than 20% in 31/38 patients (82%). CONCLUSION: Our approach may identify patients with shorter FVIII half-lives, and adapt treatment protocols when half-life studies are unavailable. In addition, our data indicate that survival of FVIII is determined by survival of endogenous VWF rather than VWF levels per se

    New Class of Monoclonal Antibodies against Severe Influenza: Prophylactic and Therapeutic Efficacy in Ferrets

    Get PDF
    Background: The urgent medical need for innovative approaches to control influenza is emphasized by the widespread resistance of circulating subtype H1N1 viruses to the leading antiviral drug oseltamivir, the pandemic threat posed by the occurrences of human infections with highly pathogenic avian H5N1 viruses, and indeed the evolving swine-origin H1N1 influenza pandemic. A recently discovered class of human monoclonal antibodies with the ability to neutralize a broad spectrum of influenza viruses (including H1, H2, H5, H6 and H9 subtypes) has the potential to prevent and treat influenza in humans. Here we report the latest efficacy data for a representative antibody of this novel class. Methodology/Principal Findings: We evaluated the prophylactic and therapeutic efficacy of the human monoclonal antibody CR6261 against lethal challenge with the highly pathogenic avian H5N1 virus in ferrets, the optimal model of human influenza infection. Survival rates, clinically relevant disease signs such as changes in body weight and temperature, virus replication in lungs and upper respiratory tract, as well as macro- and microscopic pathology were investigated. Prophylactic administration of 30 and 10 mg/kg CR6261 prior to viral challenge completely prevented mortality, weight loss and reduced the amount of infectious virus in the lungs by more than 99.9%, abolished shedding of virus in phar

    A new class of tunable acid-sensitive linkers for native drug release based on the trityl protecting group

    Get PDF
    Core-cross-linked polymeric micelles (CCPMs) are a promising nanoparticle platform due to favorable properties such as their long circulation and tumor disposition exploiting the enhanced permeability and retention (EPR) effect. Sustained release of covalently linked drugs from the hydrophobic core of the CCPM can be achieved by a biodegradable linker that connects the drug and the core. This study investigates the suitability of trityl-based linkers for the design of acid-triggered native active pharmaceutical ingredient (API) release from CCPMs. Trityl linker derivatives with different substituent patterns were synthesized and conjugated to model API compounds such as DMXAA-amine, doxorubicin, and gemcitabine, and their release kinetics were studied. Hereafter, API release from CCPMs based on mPEG-b-pHPMAmLac block copolymers was investigated. Variation of the trityl substitution pattern showed tunability of the API release rate from the trityl-based linker with t1/2 varying from &lt;1.0 to 5.0 h at pH 5.0 and t1/2 from 6.5 to &gt;24 h at pH 7.4, all at 37 °C. A clear difference in release kinetics was found between gemcitabine and doxorubicin, with gemcitabine showing no detectable release for 72 h at pH 5.0 and doxorubicin showing a t1/2 of less than 1 h. Based on these findings, we show that the reaction mechanism of trityl deprotection plays an important role in the API release kinetics. The first step in this mechanism, which is protonation of the trityl-bound amine, is pKa-dependent, which explains the difference in release rate. In conclusion, acid-sensitive and tunable trityl linkers are highly promising for the design of linker–API conjugates and for their use in CCPMs

    A New Class of Tunable Acid-Sensitive Linkers for Native Drug Release Based on the Trityl Protecting Group

    Get PDF
    Core-cross-linked polymeric micelles (CCPMs) are a promising nanoparticle platform due to favorable properties such as their long circulation and tumor disposition exploiting the enhanced permeability and retention (EPR) effect. Sustained release of covalently linked drugs from the hydrophobic core of the CCPM can be achieved by a biodegradable linker that connects the drug and the core. This study investigates the suitability of trityl-based linkers for the design of acid-triggered native active pharmaceutical ingredient (API) release from CCPMs. Trityl linker derivatives with different substituent patterns were synthesized and conjugated to model API compounds such as DMXAA-amine, doxorubicin, and gemcitabine, and their release kinetics were studied. Hereafter, API release from CCPMs based on mPEG-b-pHPMAmLac block copolymers was investigated. Variation of the trityl substitution pattern showed tunability of the API release rate from the trityl-based linker with t1/2 varying from 24 h at pH 7.4, all at 37 °C. A clear difference in release kinetics was found between gemcitabine and doxorubicin, with gemcitabine showing no detectable release for 72 h at pH 5.0 and doxorubicin showing a t1/2 of less than 1 h. Based on these findings, we show that the reaction mechanism of trityl deprotection plays an important role in the API release kinetics. The first step in this mechanism, which is protonation of the trityl-bound amine, is pKa-dependent, which explains the difference in release rate. In conclusion, acid-sensitive and tunable trityl linkers are highly promising for the design of linker-API conjugates and for their use in CCPMs

    Defining the Boundaries of Normal Thrombin Generation: Investigations into Hemostasis

    Get PDF
    In terms of its soluble precursors, the coagulation proteome varies quantitatively among apparently healthy individuals. The significance of this variability remains obscure, in part because it is the backdrop against which the hemostatic consequences of more dramatic composition differences are studied. In this study we have defined the consequences of normal range variation of components of the coagulation proteome by using a mechanism-based computational approach that translates coagulation factor concentration data into a representation of an individual's thrombin generation potential. A novel graphical method is used to integrate standard measures that characterize thrombin generation in both empirical and computational models (e.g max rate, max level, total thrombin, time to 2 nM thrombin (“clot time”)) to visualize how normal range variation in coagulation factors results in unique thrombin generation phenotypes. Unique ensembles of the 8 coagulation factors encompassing the limits of normal range variation were used as initial conditions for the computational modeling, each ensemble representing “an individual” in a theoretical healthy population. These “individuals” with unremarkable proteome composition was then compared to actual normal and “abnormal” individuals, i.e. factor ensembles measured in apparently healthy individuals, actual coagulopathic individuals or artificially constructed factor ensembles representing individuals with specific factor deficiencies. A sensitivity analysis was performed to rank either individual factors or all possible pairs of factors in terms of their contribution to the overall distribution of thrombin generation phenotypes. Key findings of these analyses include: normal range variation of coagulation factors yields thrombin generation phenotypes indistinguishable from individuals with some, but not all, coagulopathies examined; coordinate variation of certain pairs of factors within their normal ranges disproportionately results in extreme thrombin generation phenotypes, implying that measurement of a smaller set of factors may be sufficient to identify individuals with aberrant thrombin generation potential despite normal coagulation proteome composition

    Cilostazol Inhibits Accumulation of Triglyceride in Aorta and Platelet Aggregation in Cholesterol-Fed Rabbits

    Get PDF
    Cilostazol is clinically used for the treatment of ischemic symptoms in patients with chronic peripheral arterial obstruction and for the secondary prevention of brain infarction. Recently, it has been reported that cilostazol has preventive effects on atherogenesis and decreased serum triglyceride in rodent models. There are, however, few reports on the evaluation of cilostazol using atherosclerotic rabbits, which have similar lipid metabolism to humans, and are used for investigating the lipid content in aorta and platelet aggregation under conditions of hyperlipidemia. Therefore, we evaluated the effect of cilostazol on the atherosclerosis and platelet aggregation in rabbits fed a normal diet or a cholesterol-containing diet supplemented with or without cilostazol. We evaluated the effects of cilostazol on the atherogenesis by measuring serum and aortic lipid content, and the lesion area after a 10-week treatment and the effect on platelet aggregation after 1- and 10-week treatment. From the lipid analyses, cilostazol significantly reduced the total cholesterol, triglyceride and phospholipids in serum, and moreover, the triglyceride content in the atherosclerotic aorta. Cilostazol significantly reduced the intimal atherosclerotic area. Platelet aggregation was enhanced in cholesterol-fed rabbits. Cilostazol significantly inhibited the platelet aggregation in rabbits fed both a normal diet and a high cholesterol diet. Cilostazol showed anti-atherosclerotic and anti-platelet effects in cholesterol-fed rabbits possibly due to the improvement of lipid metabolism and the attenuation of platelet activation. The results suggest that cilostazol is useful for prevention and treatment of atherothrombotic diseases with the lipid abnormalities

    Cleavage of von Willebrand Factor by Granzyme M Destroys Its Factor VIII Binding Capacity

    Get PDF
    Von Willebrand factor (VWF) is a pro-hemostatic multimeric plasma protein that promotes platelet aggregation and stabilizes coagulation factor VIII (FVIII) in plasma. The metalloproteinase ADAMTS13 regulates the platelet aggregation function of VWF via proteolysis. Severe deficiency of ADAMTS13 is associated with thrombotic thrombocytopenic purpura, but does not always correlate with its clinical course. Therefore, other proteases could also be important in regulating VWF activity. In the present study, we demonstrate that VWF is cleaved by the cytotoxic lymphocyte granule component granzyme M (GrM). GrM cleaved both denaturated and soluble plasma-derived VWF after Leu at position 276 in the D3 domain. GrM is unique in that it did not affect the multimeric size and pro-hemostatic platelet aggregation ability of VWF, but instead destroyed the binding of VWF to FVIII in vitro. In meningococcal sepsis patients, we found increased plasma GrM levels that positively correlated with an increased plasma VWF/FVIII ratio in vivo. We conclude that, next to its intracellular role in triggering apoptosis, GrM also exists extracellularly in plasma where it could play a physiological role in controlling blood coagulation by determining plasma FVIII levels via proteolytic processing of its carrier VWF

    Sustainable organophosphorus-catalysed Staudinger reduction

    No full text

    LDL-receptor-related protein regulates beta2-integrin-mediated leukocyte adhesion

    No full text
    Beta2-integrin clustering on activation is a key event in leukocyte adhesion to the endothelium during the inflammatory response. In the search for molecular mechanisms leading to this clustering, we have identified low-density lipoprotein (LDL) receptor-related protein (LRP) as a new partner for beta2-integrins at the leukocyte surface. Immobilized recombinant LRP fragments served as an adhesive surface for blood-derived leukocytes and the U937 cell line. This adhesion was decreased up to 95% in the presence of antibodies against beta2-integrins, pointing to these integrins as potential partners for LRP. Using purified proteins, LRP indeed associated with the alphaMbeta2 complex and the alphaM and alphaL I-domains (K(d, app) approximately 0.5 microM). Immunoprecipitation experiments and confocal microscopy revealed that endogenously expressed LRP and alphaLbeta2 colocalized in monocytes and U937 cells. Furthermore, activation of U937 cells resulted in clustering of alphaLbeta2 and LRP to similar regions at the cell surface, indicating potential cooperation between both proteins. This was confirmed by the lack of alphaLbeta2 clustering in U937 cells treated by antisense oligonucleotides to down-regulate LRP. In addition, the absence of LRP resulted in complete abrogation of beta2-integrin-dependent adhesion to endothelial cells in a perfusion system, demonstrating the presence of a previously unrecognized link between LRP and leukocyte functio
    corecore