91 research outputs found
Using MSG to monitor the evolution of severe convective storms over East Mediterranean Sea and Israel, and its response to aerosol loading
Convective storms over East Mediterranean sea and Israel were tracked by METEOSAT Second Generation (MSG). The MSG data was used to retrieve time series of the precipitation formation processes in the clouds, the temperature of onset of precipitation, and an indication to aerosol loading over the sea. Strong correlation was found between the aerosol loading and the depth above cloud base required for the initialization of effective precipitation processes (indicated by the effective radius = 15 µm threshold). It seems from the data presented here that the clouds' response to the aerosol loading is very short
Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT)
International audienceA methodology for representing much of the physical information content of the METEOSAT Second Generation (MSG) geostationary satellite using red-green-blue (RGB) composites of the computed physical values of the picture elements is presented. The physical values are the solar reflectance in the solar channels and brightness temperature in the thermal channels. The main RGB compositions are (1) "Day Natural Colors", presenting vegetation in green, bare surface in brown, sea surface in black, water clouds as white, ice as magenta; (2) "Day Microphysical", presenting cloud microstructure using the solar reflectance component of the 3.9 ?m, visible and thermal IR channels; (3) "Night Microphysical", also presenting clouds microstructure using the brightness temperature differences between 10.8 and 3.9 ?m; (4) "Day and Night", using only thermal channels for presenting surface and cloud properties, desert dust and volcanic emissions; (5) "Air Mass", presenting mid and upper tropospheric features using thermal water vapor and ozone channels. The scientific basis for these rendering schemes is provided, with examples for the applications. The expanding use of these rendering schemes requires their proper documentation and setting as standards, which is the main objective of this publication
The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius
International audienceA 3-minute 3-km rapid scan of the METEOSAT Second Generation geostationary satellite over southern Africa was applied to tracking the evolution of cloud top temperature (T) and particle effective radius (re) of convective elements. The evolution of T-re relations showed little dependence on time, leaving re to depend almost exclusively on T. Furthermore, cloud elements that fully grew to large cumulonimbus stature had the same T-re relations as other clouds in the same area with limited development that decayed without ever becoming a cumulonimbus. Therefore, a snap shot of T-re relations over a cloud field provides the same relations as composed from tracking the time evolution of T and re of individual clouds, and then compositing them. This is the essence of exchangeability of time and space scales, i.e., ergodicity, of the T-re relations for convective clouds. This property has allowed inference of the microphysical evolution of convective clouds with a snap shot from a polar orbiter. The fundamental causes for the ergodicity are suggested to be the observed stability of re for a given height above cloud base in a convective cloud, and the constant renewal of growing cloud tops with cloud bubbles that replace the cloud tops with fresh cloud matter from below
Example of a self-consistent solution for a fermion on domain wall
We discuss a self-consistent solution for a fermion coupled to static scalar
field in the form of a kink (domain wall). In particular, we study the case
when the fermion occupies an excited non-zero frequency level in the presence
of the domain wall field. The effect of the domain wall profile distortion is
calculated analytically.Comment: 9 pages, no figures; minor corrections, one reference added, results
unchange
Perturbative approach to the hydrogen atom in strong magnetic field
The states of hydrogen atom with principal quantum number n <= 3 and zero
magnetic quantum number in constant homogeneous magnetic field H are
considered. The perturbation theory series is summed with the help of Borel
transformation and conformal mapping of the Borel variable. Convergence of
approximate energy eigenvalues and their agreement with corresponding existing
results are observed for external fields up to n^3 H ~ 5. The possibility of
restoring the asymptotic behaviour of energy levels using perturbation theory
coefficients is also discussed.Comment: LaTeX, 8 pages with 5 eps figure
Stable branches of a solution for a fermion on domain wall
We discuss the case when a fermion occupies an excited non-zero frequency
level in the field of domain wall. We demonstrate that a solution exists for
the coupling constant in the limited interval . We
show that indeed there are different branches of stable solution for in
this interval. The first one corresponds to a fermion located on the domain
wall (). The second branch, which belongs to the interval
, describes a polarized fermion off the domain
wall. The third branch with describes an excited antifermion in
the field of the domain wall.Comment: 15 pages, 7 figures, references adde
Towards a high precision calculation for the pion-nucleus scattering lengths
We calculate the leading isospin conserving few-nucleon contributions to pion
scattering on H, He, and He. We demonstrate that the strong
contributions to the pion-nucleus scattering lengths can be controlled
theoretically to an accuracy of a few percent for isoscalar nuclei and of 10%
for isovector nuclei. In particular, we find the -He scattering length
to be where the uncertainties are
due to ambiguities in the -N scattering lengths and few-nucleon effects,
respectively. To establish this accuracy we need to identify a suitable power
counting for pion-nucleus scattering. For this purpose we study the dependence
of the two-nucleon contributions to the scattering length on the binding energy
of H. Furthermore, we investigate the relative size of the leading two-,
three-, and four-nucleon contributions. For the numerical evaluation of the
pertinent integrals, aMonte Carlo method suitable for momentum space is
devised. Our results show that in general the power counting suggested by
Weinberg is capable to properly predict the relative importance of -nucleon
operators, however, it fails to capture the relative strength of - and
-nucleon operators, where we find a suppression by a factor of 5
compared to the predicted factor of 50. The relevance for the extraction of the
isoscalar -N scattering length from pionic H and He is discussed.
As a side result, we show that beyond the calculation of the -H
scattering length is already beyond the range of applicability of heavy pion
effective field theory.Comment: 24 pages, 14 figures, 10 table
Predictive powers of chiral perturbation theory in Compton scattering off protons
We study low-energy nucleon Compton scattering in the framework of baryon
chiral perturbation theory (BPT) with pion, nucleon, and (1232)
degrees of freedom, up to and including the next-to-next-to-leading order
(NNLO). We include the effects of order , and , with
MeV the -resonance excitation energy. These are
all "predictive" powers in the sense that no unknown low-energy constants enter
until at least one order higher (i.e, ). Estimating the theoretical
uncertainty on the basis of natural size for effects, we find that
uncertainty of such a NNLO result is comparable to the uncertainty of the
present experimental data for low-energy Compton scattering. We find an
excellent agreement with the experimental cross section data up to at least the
pion-production threshold. Nevertheless, for the proton's magnetic
polarizability we obtain a value of fm, in
significant disagreement with the current PDG value. Unlike the previous
PT studies of Compton scattering, we perform the calculations in a
manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB)
expansion. The difference between the lowest order HBPT and BPT
results for polarizabilities is found to be appreciable. We discuss the chiral
behavior of proton polarizabilities in both HBPT and BPT with the
hope to confront it with lattice QCD calculations in a near future. In studying
some of the polarized observables, we identify the regime where their naive
low-energy expansion begins to break down, thus addressing the forthcoming
precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ
Determination of the scalar polarizabilities of the proton using beam asymmetry in Compton scattering
The scalar dipole polarizabilities, and , are
fundamental properties related to the internal dynamics of the nucleon. The
currently accepted values of the proton polarizabilities were determined by
fitting to unpolarized proton Compton scattering cross section data. The
measurement of the beam asymmetry in a certain kinematical range
provides an alternative approach to the extraction of the scalar
polarizabilities. At the Mainz Microtron (MAMI) the beam asymmetry was measured
for Compton scattering below pion photoproduction threshold for the first time.
The results are compared with model calculations and the influence of the
experimental data on the extraction of the scalar polarizabilities is
determined.Comment: 6 pages, 5 figure
Observation of the Higgs Boson of strong interaction via Compton scattering by the nucleon
It is shown that the Quark-Level Linear Model (QLLM) leads
to a prediction for the diamagnetic term of the polarizabilities of the nucleon
which is in excellent agreement with the experimental data. The bare mass of
the meson is predicted to be MeV and the two-photon
width keV. It is argued that the
mass predicted by the QLLM corresponds to the reaction, i.e. to a -channel pole of the reaction.
Large -angle Compton scattering experiments revealing effects of the
meson in the differential cross section are discussed. Arguments are presented
that these findings may be understood as an observation of the Higgs boson of
strong interaction while being part of the constituent quark.Comment: 17 pages, 6 figure
- …