28 research outputs found

    Geochemical Soil Atlas of Switzerland - Distribution of Toxic Elements

    Get PDF
    Chemical elements such as copper and molybdenum are essential for animal and human health but may become toxic at elevated concentrations depending on the exposure and intake rate. Other elements such as mercury pose a threat to human health at already low concentrations. The soil acts as the main source of these elements for plant uptake and is thus driving accumulation along the food chain. However, in Switzerland, no nationwide information on elemental distributions in soils has existed up to now. The geochemical soil atlas of Switzerland will fill this gap by presenting the concentration ranges and the spatial distribution of 20 elements in the topsoil. In this summary, we present the methodological approaches and some main findings of the atlas with a focus on toxic elements as well as elements that can be or are toxic at higher concentrations

    Carbon and methane cycling in arsenic-contaminated aquifers

    Get PDF
    Geogenic arsenic (As) contamination of groundwater is a health threat to millions of people worldwide, particularly in alluvial regions of South and Southeast Asia. Mitigation measures are often hindered by high heterogeneities in As concentrations, the cause(s) of which are elusive. Here we used a comprehensive suite of stable isotope analyses and hydrogeochemical parameters to shed light on the mechanisms in a typical high-As Holocene aquifer near Hanoi where groundwater is advected to a low-As Pleistocene aquifer. Carbon isotope signatures (δ13^{13}C-CH4_{4}, δ13^{13}C-DOC, δ13^{13}C-DIC) provided evidence that fermentation, methanogenesis and methanotrophy are actively contributing to the As heterogeneity. Methanogenesis occurred concurrently where As levels are high (>200 µg/L) and DOC-enriched aquitard pore water infiltrates into the aquifer. Along the flowpath to the Holocene/Pleistocene aquifer transition, methane oxidation causes a strong shift in δ13^{13}C-CH4_{4} from -87‰ to +47‰, indicating high reactivity. These findings demonstrate a previously overlooked role of methane cycling and DOC infiltration in high-As aquifers

    Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes

    Get PDF
    Geogenic arsenic (As) contamination of groundwater poses a major threat to global health, particularly in Asia. To mitigate this exposure, groundwater is increasingly extracted from low-As Pleistocene aquifers. This, however, disturbs groundwater flow and potentially draws high-As groundwater into low-As aquifers. Here we report a detailed characterisation of the Van Phuc aquifer in the Red River Delta region, Vietnam, where high-As groundwater from a Holocene aquifer is being drawn into a low-As Pleistocene aquifer. This study includes data from eight years (2010–2017) of groundwater observations to develop an understanding of the spatial and temporal evolution of the redox status and groundwater hydrochemistry. Arsenic concentrations were highly variable (0.5–510 μg/L) over spatial scales of <200 m. Five hydro(geo)chemical zones (indicated as A to E) were identified in the aquifer, each associated with specific As mobilisation and retardation processes. At the riverbank (zone A), As is mobilised from freshly deposited sediments where Fe(III)-reducing conditions occur. Arsenic is then transported across the Holocene aquifer (zone B), where the vertical intrusion of evaporative water, likely enriched in dissolved organic matter, promotes methanogenic conditions and further release of As (zone C). In the redox transition zone at the boundary of the two aquifers (zone D), groundwater arsenic concentrations decrease by sorption and incorporations onto Fe(II) carbonates and Fe(II)/Fe(III) (oxyhydr)oxides under reducing conditions. The sorption/incorporation of As onto Fe(III) minerals at the redox transition and in the Mn(IV)-reducing Pleistocene aquifer (zone E) has consistently kept As concentrations below 10 μg/L for the studied period of 2010–2017, and the location of the redox transition zone does not appear to have propagated significantly. Yet, the largest temporal hydrochemical changes were found in the Pleistocene aquifer caused by groundwater advection from the Holocene aquifer. This is critical and calls for detailed investigations

    Sensitive and High-Throughput Analysis of Volatile Organic Species of S, Se, Br, and I at Trace Levels in Water and Atmospheric Samples by Thermal Desorption Coupled to Gas Chromatography and Inductively Coupled Plasma Mass Spectrometry

    No full text
    Emissions of volatile organic sulfur (S), selenium (Se), bromine (Br), and iodine (I) species from aquatic ecosystems represent an important source of these elements into the atmosphere. Available methods to measure these species are either not sensitive enough or not automated, which hinder a full understanding of species distribution and production mechanisms. Here, we present a sensitive and high-throughput method for the simultaneous and comprehensive quantification of S, Se, Br, and I volatile organic species in atmospheric and aqueous samples using a preconcentration step onto sorbent tubes and subsequent analysis by thermal desorption coupled to gas chromatography and inductively coupled plasma mass spectrometry (TD-GC-ICPMS). Selected commercially available sorbent tubes, consisting of mixed porous polymer and graphitized black carbon, offered the highest trapping capacity and lowest loss of species when stored at -20 degrees C for 28 days after sampling. After optimization of the TD-GC-ICP-MS method, absolute detection limits were better than 3.8 pg, 9.1 fg, 313 fg, and 50 fg, respectively, for S, Se, Br, and I species. As a proof of concept, the concentrations of target species were determined in aqueous and continuously collected atmospheric samples during a cruise in the Baltic and North Seas. Moreover, unknown S, Br, and I volatile species were detected in both aqueous and atmospheric samples demonstrating the full potential of the method.ISSN:1520-6882ISSN:0003-270

    Constraining Atmospheric Selenium Emissions Using Observations, Global Modeling, and Bayesian Inference

    No full text
    Selenium (Se) is an essential dietary element for humans and animals, and the atmosphere is an important source of Se to soils. However, estimates of global atmospheric Se fluxes are highly uncertain. To constrain these uncertainties, we use a global model of atmospheric Se cycling and a database of more than 600 sites where Se in aerosol has been measured. Applying Bayesian inference techniques, we determine the probability distributions of global Se emissions from the four major sources: anthropogenic activities, volcanoes, marine biosphere, and terrestrial biosphere. Between 29 and 36 Gg of Se are emitted to the atmosphere every year, doubling previous estimates of emissions. Using emission parameters optimized by aerosol network measurements, our model shows good agreement with the aerosol Se observations (R2 = 0.66), as well as with independent aerosol (0.59) and wet deposition measurements (0.57). Both model and measurements show a decline in Se over North America in the last two decades because of changes in technology and energy policy. Our results highlight the role of the ocean as a net atmospheric Se sink, with around 7 Gg yr–1 of Se transferred from land through the atmosphere. The constrained Se emissions represent a substantial step forward in understanding the global Se cycle.ISSN:0013-936XISSN:1520-585

    Sensitive analysis of selenium speciation in natural seawater by isotope-dilution and large volume injection using PTV-GC-ICP-MS

    No full text
    Although oceans play a key role in the global selenium (Se) cycle, there is currently very little quantitative information available on the distribution of Se concentrations and Se speciation in marine environments. In general, determining Se concentration and speciation in seawater is highly challenging due to very low Se levels ((sub)ng⋅L−1), whereas matrix elements interfering Se pre-concentration and detection are up to the g⋅L−1 levels. In this study, we established a sensitive method for the determination of the various Se chemical fractions present in natural seawater, i.e. selenite (SeIV), selenate (SeVI), organic Se-II + Se0 and total Se, using species-specific isotope dilution gas chromatography coupled to inductively coupled plasma mass spectrometry (ID-GC-ICP-MS). We compared different derivatization reagents and optimized specific pre-treatment protocols, including a microwave assisted oxidation protocol for the determination of total Se and organic Se-II + Se0 using H2O2. To increase sensitivity, we developed an online pre-concentration method based on large volume injection (LVI) using a programmed temperature vaporization (PTV) inlet. Eventually, the developed method achieved low absolute and methodological detection limits, i.e., respectively, 0.1–0.3 pg and 0.9–3.1 ng.L-1 for the different fractions. The accuracy of our method was of 2% for a certified reference material (CRM) diluted in artificial seawater while the precision was better than 4% for a freshwater CRM in artificial seawater matrix as well as two common seawater CRMs certified for trace elements excluding Se. As a proof-of-concept, we quantified the various Se fractions in a large number of natural water samples from the Baltic and North Seas, encompassing a wide range of salinity (7–35 psu), which shows that its detection limits are sufficient to determine total Se, SeIV, SeVI and organic Se-II + Se0 concentrations in brackish and marine systems.ISSN:0003-2670ISSN:1873-432

    MoMuCAMS: A new modular platform for boundary layer aerosol and trace gas vertical measurements in extreme environments

    No full text
    The Modular Multiplatform Compatible Air Measurement System (MoMuCAMS) is a newly developed in situ aerosol and trace gas measurement payload for lower atmospheric vertical profiling in extreme environments. MoMuCAMS is a multiplatform compatible system, primarily designed to be attached to a helikite, a rugged tethered balloon type that is suitable for operations in cold and windy conditions. The system addresses the need for detailed vertical observations of atmospheric composition in the boundary layer and lower free-troposphere, especially in polar and alpine regions. These regions are known to frequently experience strong temperature inversions, preventing vertical mixing of aerosols and trace gases, and therefore reducing the representativeness of ground-based measurements for the vertical column, causing a large informational gap. The MoMuCAMS encompasses a box that houses instrumentation, a board computer to stream data to the ground for inflight decisions, and a power distribution system. The enclosure has an internal volume of roughly 100 L and can accommodate various combinations of instruments within its 20 kg weight limit. This flexibility represents a unique feature, allowing the simultaneous study of multiple aerosol properties (number concentration, size distribution, cluster ions, optical properties, chemical composition and morphology), as well as trace gases (e.g. CO, CO2, O3, N2O) and meteorological variables (e.g., wind speed and direction, temperature, relative humidity, pressure) . To the authors’ knowledge, it is the first tethered balloon based system equipped with instrumentation providing a full size distribution for aerosol particles starting from 8 nm, which is vital to understanding atmospheric processes of aerosols and their climate impacts through interaction with direct radiation and clouds. MoMuCAMS has been deployed during two field campaigns in Swiss Alpine valleys in winter and fall 2021. It has been further deployed in Fairbanks, Alaska (USA) in January–February 2022, as part of the ALPACA (Alaskan Layered Pollution and Chemical Analysis) campaign and in Pallas, Finland, in September–October 2022, as part of the PaCE2022 (Pallas Cloud Experiment) study. The system flew successfully at temperatures of −36° C, in wind speeds above 15 m s−1 and in clouds. Here we present a full characterization of the specifically developed inlet system and novel, hitherto not yet characterized, instruments, most notably a miniaturized scanning electrical mobility spectrometer and a near-infrared carbon monoxide monitor. Three cases from one of the Swiss Alpine studies are presented to illustrate the capability of MoMuCAMS to perform high-resolution measurements with different instrumental setups. We show two case studies with surface-based inversions in the morning that allowed for observation of aerosol and trace gas dynamics in evolving boundary layer conditions. The vertical structure of the boundary layer featured in both cases a surface layer (SL) with a top between 50 and 70 m above ground level, dominated by traffic emissions leading to particle number concentrations up to seven times higher than in the residual layer above. Following sunrise, turbulent mixing led to rapid development of a mixed boundary layer and dilution of the SL within one to two hours. The third case study illustrates the capability of the system to perform aerosol sampling at a chosen altitude over several hours, long enough in low aerosol concentrations environments to perform chemical analyses. Trace elements were analyzed using inductively coupled plasma tandem mass spectrometry. The samples were also analyzed under a scanning electron microscope with energy dispersive x-ray and a transmission electron microscope to gain additional insights into their morphology and chemical composition. Such analyses are suitable to gain deeper insights into particles’ origins, and their physical and chemical transformation in the atmosphere. Overall, MoMuCAMS is an easily deployable tethered balloon payload with high flexibility, able to cope with the rough conditions of extreme environments. Compared to uncrewed aerial vehicles (drones) it allows to observe aerosol processes in detail over multiple hours providing insights on their vertical distribution and processes, e.g. in clouds, that were difficult to obtain beforehand

    Reaction of DMS and HOBr as a Sink for Marine DMS and an Inhibitor of Bromoform Formation

    No full text
    Recently, we suggested that hypobromous acid (HOBr) is a sink for the marine volatile organic sulfur compound dimethyl sulfide (DMS). However, HOBr is also known to react with reactive moieties of dissolved organic matter (DOM) such as phenolic compounds to form bromoform (CHBr3) and other brominated compounds. The reaction between HOBr and DMS may thus compete with the reaction between HOBr and DOM. To study this potential competition, kinetic batch and diffusion-reactor experiments with DMS, HOBr, and DOM were performed. Based on the reaction kinetics, we modeled concentrations of DMS, HOBr, and CHBr3 during typical algal bloom fluxes of DMS and HOBr (10-13 to 10-9 M s-1). For an intermediate to high HOBr flux (≥10-11 M s-1) and a DMS flux ≤10-11 M s-1, the model shows that the DMS degradation by HOBr was higher than for photochemical oxidation, biological consumption, and sea-air gas exchange combined. For HOBr fluxes ≤10-11 M s-1 and a DMS flux of 10-11 M s-1, our model shows that CHBr3 decreases by 86% compared to a lower DMS flux of 10-12 M s-1. Therefore, the reaction between HOBr and DMS likely not only presents a sink for DMS but also may lead to suppressed CHBr3 formation.ISSN:0013-936XISSN:1520-585
    corecore