728 research outputs found

    Investigation of some of the factors influencing fingermark detection

    Full text link
    © 2018 Elsevier B.V. The primary aims of fingermark detection research are to improve the quality and increase the rate of detection of identifiable impressions. This is usually performed through the development of new methods and technologies to provide alternatives to or improve current procedures. While research of this nature is important to pursue, it fails to address the underlying question related to the factors that affect the detection of a latent fingermark. There has been significant research that has examined the differences between techniques, donors and fingermark age, as well as the composition of latent fingermarks. However, they tend not to focus on determining how these factors influence the quality of the developed mark. This study involved the development and evaluation of over 14,000 natural fingermarks deposited on a variety of surfaces to examine the effect of substrate, age, donor variability (both inter- and intra-), depletions and type of finger on fingermark development. Fingermarks were deposited on four substrates (two non-porous and two porous) and developed with either indanedione-zinc (IND-Zn) or cyanoacrylate followed by rhodamine 6G staining (CA + R6G). Three independent assessors graded each mark on the quality of development using an absolute scale proposed by the UK Centre for Applied Science and Technology (CAST). The data generated from these assessments were then analysed for trends or other useful insights. The results from this work reaffirm that individual substrate characteristics (and the choice of development technique) play a significant role in determining the number and quality of marks developed. It was found that fingermarks were more likely to be detected on porous substrates and to also be of a higher quality than on non-porous. The effect of fingermark donor variability was also explored, with significant differences observed between donors and within donors. This research shows that current detection techniques do not detect all available fingermarks, reinforcing the need for further research into the fundamentals of fingermark detection in order to gain a better understanding of the techniques currently used. The study has identified considerations for the development of novel techniques and how we need to account for variability when designing fingermark research experiments

    Nuclear structure of 30S and its implications for nucleosynthesis in classical novae

    Full text link
    The uncertainty in the 29P(p,gamma)30S reaction rate over the temperature range of 0.1 - 1.3 GK was previously determined to span ~4 orders of magnitude due to the uncertain location of two previously unobserved 3+ and 2+ resonances in the 4.7 - 4.8 MeV excitation region in 30S. Therefore, the abundances of silicon isotopes synthesized in novae, which are relevant for the identification of presolar grains of putative nova origin, were uncertain by a factor of 3. To investigate the level structure of 30S above the proton threshold (4394.9(7) keV), a charged-particle spectroscopy and an in-beam gamma-ray spectroscopy experiments were performed. Differential cross sections of the 32S(p,t)30S reaction were measured at 34.5 MeV. Distorted wave Born approximation calculations were performed to constrain the spin-parity assignments of the observed levels. An energy level scheme was deduced from gamma-gamma coincidence measurements using the 28Si(3He,n-gamma)30S reaction. Spin-parity assignments based on measurements of gamma-ray angular distributions and gamma-gamma directional correlation from oriented nuclei were made for most of the observed levels of 30S. As a result, the resonance energies corresponding to the excited states in 4.5 MeV - 6 MeV region, including the two astrophysically important states predicted previously, are measured with significantly better precision than before. The uncertainty in the rate of the 29P(p,gamma)30S reaction is substantially reduced over the temperature range of interest. Finally, the influence of this rate on the abundance ratios of silicon isotopes synthesized in novae are obtained via 1D hydrodynamic nova simulations.Comment: 22 pages, 12 figure

    A new parametric equation of state and quark stars

    Full text link
    It is still a matter of debate to understand the equation of state of cold supra-nuclear matter in compact stars because of unknown on-perturbative strong interaction between quarks. Nevertheless, it is speculated from an astrophysical view point that quark clusters could form in cold quark matter due to strong coupling at realistic baryon densities. Although it is hard to calculate this conjectured matter from first principles, one can expect the inter-cluster interaction to share some general features to nucleon-nucleon interaction. We adopt a two-Gaussian component soft-core potential with these general features and show that quark clusters can form stable simple cubic crystal structure if we assume Gaussian form wave function. With this parameterizing, Tolman-Oppenheimer-Volkoff equation is solved with reasonable constrained parameter space to give mass-radius relation of crystalline solid quark star. With baryon densities truncated at 2 times nuclear density at surface and range of interaction fixed at 2fm we can reproduce similar mass-radius relation to that obtained with bag model equations of state. The maximum mass ranges from about 0.5 to 3 solar mass. Observed maximum pulsar mass (about 2 solar mass) is then used to constrain parameters of this simple interaction potential.Comment: 5 pages, 2 figure

    Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model

    Get PDF
    We have carried out Density Matrix Renormalization Group (DMRG) calculations on the ground state of long polyacene oligomers within a Pariser-Parr-Pople (PPP) Hamiltonian. The PPP model includes long-range electron correlations which are required for physically realistic modeling of conjugated polymers. We have obtained the ground state energy as a function of the dimerization δ\delta and various correlation functions and structure factors for δ=0\delta=0. From energetics, we find that while the nature of the Peierls' instabilityin polyacene is conditional and strong electron correlations enhance the dimerization. The {\it cis} form of the distortion is favoured over the {\it trans} form. However, from the analysis of correlation functions and associated structure factors, we find that polyacene is not susceptible to the formation of a bond order wave (BOW), spin density wave (SDW) or a charge density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure

    Metabolic changes related to the IDH1 mutation in gliomas preserve TCA-cycle activity: An investigation at the protein level

    Get PDF
    The discovery of the IDH1 R132H (IDH1 mut) mutation in low-grade glioma and the associated change in function of the IDH1 enzyme has increased the interest in glioma metabolism. In an earlier study, we found that changes in expression of genes involved in the aerobic glycolysis and the TCA cycle are associated with IDH1 mut. Here, we apply proteomics to FFPE samples of diffuse gliomas with or without IDH1 mutations, to map changes in protein levels associated with this mutation. We observed significant changes in the enz

    Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?

    Full text link
    Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice. While graphite has non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small monopolar electrostatic contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation contributions are found to be very similar in both materials and to almost completely cancel out by the Pauli repulsions at physically relevant interlayer distances resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities the hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C coefficient in the hexagonal bulk form resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar predicting practically the same interlayer distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table

    TP53 mutated glioblastoma stem-like cell cultures are sensitive to dual mTORC1/2 inhibition while resistance in TP53 wild type cultures can be overcome by combined inhibition of mTORC1/2 and Bcl-2

    Get PDF
    Background: Glioblastoma is the most malignant tumor of the central nervous system and still lacks effective treatment. This study explores mutational biomarkers of 11 drugs targeting either the RTK/Ras/PI3K, the p53 or the Rb pathway using 25 patient-derived glioblastoma stem-like cell cultures (GSCs). Results: We found that TP53 mutated GSCs were approximately 3.5 fold more sensitive to dual inhibition of mammalian target of rapamycin complex 1 and 2 (mTORC1/2) compared to wild type GSCs. We identified that Bcl-2(Thr56/Ser70) phosphorylation contributed to the resistance of TP53 wild type GSCs against dual mTORC1/2 inhibition. The Bcl-2 inhibitor ABT-263 (navitoclax) increased sensitivity to the mTORC1/2 inhibitor AZD8055 in TP53 wild type GSCs, while sensitivity to AZD8055 in TP53 mutated GSCs remained unchanged. Conclusion: Our data suggest that Bcl-2 confers resistance to mTORC1/2 inhibitors in TP53 wild type GSCs and that combined inhibition of both mTORC1/2 and Bcl-2 is worthwhile to explore further in TP53 wild type glioblastomas, whereas in TP53 mutated glioblastomas dual mTORC1/2 inhibitors should be explored

    An antibody-based biomarker discovery method by mass spectrometry sequencing of complementarity determining regions

    Get PDF
    Autoantibodies are increasingly used as biomarkers in the detection of autoimmune disorders and cancer. Disease specific antibodies are generally detected by their binding to specific antigens. As an alternative approach, we propose to identify specific complementarity determining regions (CDR) of IgG that relate to an autoimmune disorder or cancer instead of the specific antigen(s). In this manuscript, we tested the technical feasibility to detect and identify CDRs of specific antibodies by mass spectrometry. We used a commercial pooled IgG preparation as well as purified serum IgG fractions that were spiked with different amounts of a fully human monoclonal antibody (adalimumab). These samples were enzymatically digested and analyzed by nanoLC Orbitrap mass spectrometry. In these samples, we were able to identify peptides derived from the CDRs of adalimumab. These peptides could be detected at an amount of 110 attomole, 5 orders of magnitude lower than the total IgG concentration in these samples. Using higher energy collision induced dissociation (HCD) fragmentation and subsequent de novo sequencing, we could successfully identify 50% of the detectable CDR peptides of adalimumab. In addition, we demonstrated that an affinity purification with anti-dinitrophenol (DNP) monoclonal antibody enhanced anti-DNP derived CDR detection in a serum IgG background. In conclusion, specific CDR peptides could be detected and sequenced at relatively low levels (attomole-femtomole range) which should allow the detection of clinically relevant CDR peptides in patient samples
    • …
    corecore